Time-frequency representations of electroencephalographic signals lend themselves to a granular analysis of cognitive and psychological processes. Characterizing developmental trajectories of time-frequency measures can thus inform us about the development of the processes involved as well as correlated traits and behaviors. We decomposed electroencephalographic (EEG) activity in a large sample of individuals (N = 1692; 917 females), assessed at approximately 3-year intervals from the age of 11 to their mid-20s. Participants completed an oddball task that elicits a robust P3 response. Principal component analysis served to identify the primary dimensions of time-frequency energy. Component loadings were virtually identical across assessment waves. A common and stable set of time-frequency dynamics thus characterized EEG activity throughout this age range. Trajectories of changes in component scores suggest that aspects of brain development reflected in these components comprise two distinct phases, with marked decreases in component amplitude throughout much of adolescence followed by smaller yet significant rates of decreases into early adulthood. Although the structure of time-frequency activity was stable throughout adolescence and early adulthood, we observed subtle change in component loadings as well. Our findings suggest that striking developmental change in event-related potentials emerges through a gradual change in the magnitude and timing of a stable set of dimensions of time-frequency activity, illustrating the usefulness of time-frequency representations of EEG signals and longitudinal designs for understanding brain development. In addition, we provide proof of concept that trajectories of time-frequency activity can serve as potential endophenotypes for childhood externalizing psychopathology and alcohol use in adolescence and early adulthood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868093PMC
http://dx.doi.org/10.1111/psyp.14200DOI Listing

Publication Analysis

Top Keywords

early adulthood
16
adolescence early
12
time-frequency activity
12
time-frequency
9
time-frequency measures
8
oddball task
8
time-frequency representations
8
trajectories time-frequency
8
eeg activity
8
dimensions time-frequency
8

Similar Publications

Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease.

Nutrients

December 2024

Pediatric Hepatology and Liver Transplant Unit, Department of Pediatrics, ERN Rare Liver ERN TransplantChild, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.

Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease with two distinct phenotypes, an infantile-onset form (formerly Wolman disease) and a later-onset form (formerly cholesteryl ester storage disease). The objective of this narrative review is to examine the most important aspects of the diagnosis and treatment of LAL-D and to provide practical expert recommendations. The infantile-onset form occurs in the first weeks of life and is characterized by malnourishment and failure to thrive due to gastrointestinal impairment (vomiting, diarrhea, malabsorption), as well as systemic inflammation, hepatosplenomegaly, and adrenal calcifications.

View Article and Find Full Text PDF

The complex relationship between kidney disease and hypertension represents a critical area of research, yet less attention has been devoted to exploring how this connection develops early in life. Various environmental factors during pregnancy and lactation can significantly impact kidney development, potentially leading to kidney programming that results in alterations in both structure and function. This early programming can contribute to adverse long-term kidney outcomes, such as hypertension.

View Article and Find Full Text PDF

Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.

View Article and Find Full Text PDF

Osteoporosis is a common disease of the skeletal system that increases the risk of fracture. The prevalence of osteoporosis has been increasing as the aging population increases, affecting more than 200 million people worldwide. This study aimed to shed light on the clinical impact of osteoporosis on women's health and quality of life by evaluating the prevalence and risk factors for this disease among postmenopausal women, using a 10-year dataset from a tertiary center.

View Article and Find Full Text PDF

Background And Objective: The effects of neonatal hypoglycemia on the developing brain are well known, resulting in poor neurological outcomes. We aimed to perform an updated meta-analysis on neonatal hypoglycemia, the severity of hypoglycemia, and the associated neurodevelopmental outcomes from infancy to adulthood.

Methods: A systematic literature search was conducted from inception until March 2024, using the PubMed, CINAHL, Embase, and the CENTRAL databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!