Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional carbon-based materials have attracted much attention for electromagnetic wave absorption because low-dimensional materials have failed to meet the needs of constructing effective networks with ultra-light properties due to their easy agglomeration and in-plane stacking. The 3D element of quadrangular cone carbon was innovatively applied in this work to construct interconnected networks (MFC). This material successfully overcomes the disadvantages of easy agglomeration and in-plane stacking in low-dimensional elements, allowing for more efficient construction of absorbing networks. The prepared MFC exhibits excellent EAB (6.70 GHz) and RL (-50.92 dB), especially at an ultra-low filling ratio (1.04 wt%). Such superior performance can be attributed to the MFC effective network constructed by quadrangular cone carbon facilitating the entrance and diffuse scattering of electromagnetic waves. This study may provide new inspiration for constructing an effective absorbing network of pure carbon with 3D elements (quadrangular cone carbon), realizing ultra-low filling and broadband microwave performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt02772k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!