AI Article Synopsis

  • The spatial arrangement of photoelements in vegetation, measured by the clumping index (CI), significantly influences light absorption and photosynthesis within canopies, yet is often overlooked in biosphere models assessing carbon cycles.
  • This study integrated CI into the Community Land Model version 5 (CLM5) to analyze its effects on canopy absorbed radiation and gross primary production (GPP), revealing that CI can lead to significant changes in light absorption, with sunlit canopies absorbing less radiation while shaded canopies absorb more.
  • Findings indicate a net increase in GPP of 1.0 ± 0.12 PgC year due to enhanced photosynthesis in shaded areas, but also highlight that variability

Article Abstract

The spatial dispersion of photoelements within a vegetation canopy, quantified by the clumping index (CI), directly regulates the within-canopy light environment and photosynthesis rate, but is not commonly implemented in terrestrial biosphere models to estimate the ecosystem carbon cycle. A few global CI products have been developed recently with remote sensing measurements, making it possible to examine the global impacts of CI. This study deployed CI in the radiative transfer scheme of the Community Land Model version 5 (CLM5) and used the revised CLM5 to quantitatively evaluate the extent to which CI can affect canopy absorbed radiation and gross primary production (GPP), and for the first time, considering the uncertainty and seasonal variation of CI with multiple remote sensing products. Compared to the results without considering the CI impact, the revised CLM5 estimated that sunlit canopy absorbed up to 9%-15% and 23%-34% less direct and diffuse radiation, respectively, while shaded canopy absorbed 3%-18% more diffuse radiation across different biome types. The CI impacts on canopy light conditions included changes in canopy light absorption, and sunlit-shaded leaf area fraction related to nitrogen distribution and thus the maximum rate of Rubisco carboxylase activity (V ), which together decreased photosynthesis in sunlit canopy by 5.9-7.2 PgC year while enhanced photosynthesis by 6.9-8.2 PgC year in shaded canopy. With higher light use efficiency of shaded leaves, shaded canopy increased photosynthesis compensated and exceeded the lost photosynthesis in sunlit canopy, resulting in 1.0 ± 0.12 PgC year net increase in GPP. The uncertainty of GPP due to the different input CI datasets was much larger than that caused by CI seasonal variations, and was up to 50% of the magnitude of GPP interannual variations in the tropical regions. This study highlights the necessity of considering the impacts of CI and its uncertainty in terrestrial biosphere models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100496PMC
http://dx.doi.org/10.1111/gcb.16503DOI Listing

Publication Analysis

Top Keywords

canopy light
12
canopy absorbed
12
sunlit canopy
12
shaded canopy
12
canopy
11
light environment
8
terrestrial biosphere
8
biosphere models
8
remote sensing
8
revised clm5
8

Similar Publications

The moth fauna is more diverse in the understorey than in the canopy in a European forest.

Bull Entomol Res

January 2025

Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany.

The canopy of forests as the 'last biotic frontier' has often been neglected in insect biodiversity studies because it is harder to access compared to the understorey, even in relatively well-known temperate ecosystems. We investigated the diversity, abundance, and body size patterns of macromoths (Lepidoptera) in the canopy and understorey in a central European deciduous forest. We collected moths at two sites during 19 trapping nights and three lunar phases between July and September 2021 using a weak ultraviolet light emitting diode (LED) lamp (LepiLED ).

View Article and Find Full Text PDF

Can a Light Detection and Ranging (LiDAR) and Multispectral Sensor Discriminate Canopy Structure Changes Due to Pruning in Olive Growing? A Field Experimentation.

Sensors (Basel)

December 2024

Department of Agricultural, Alimentary, Environmental and Forestry Sciences, Biosystem Engineering Division-DAGRI, University of Florence, Piazzale delle Cascine 15, 50144 Florence, Italy.

The present research aimed to evaluate whether two sensors, optical and laser, could highlight the change in olive trees' canopy structure due to pruning. Therefore, two proximal sensors were mounted on a ground vehicle (Kubota B2420 tractor): a multispectral sensor (OptRx ACS 430 AgLeader) and a 2D LiDAR sensor (Sick TIM 561). The multispectral sensor was used to evaluate the potential effect of biomass variability before pruning on sensor response.

View Article and Find Full Text PDF

Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Environmental factors contribute to uncertainty in estimating gross primary productivity (GPP) in current light use efficiency (LUE) models because basic formulas can't capture complex environmental impacts.
  • A new hybrid model called TL-CRF combines the random forest (RF) technique with a two-leaf LUE model to account for various ecological stressors and seasonal variations in canopy structure.
  • This integration enhances the accuracy of GPP estimates by merging strengths from both process-based and data-driven approaches.
View Article and Find Full Text PDF

Light quality regulates growth and flavonoid content in a widespread forest understorey medicinal species Georgi.

Front Plant Sci

December 2024

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.

Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!