AI Article Synopsis

  • The study investigates how Duhuo Jisheng decoction (DHJSD) may help treat osteoarthritis (OA) using network pharmacology and molecular docking techniques.
  • The researchers identified 210 chemical components from DHJSD and 253 common targets related to OA through various databases, then analyzed their interactions and pathways.
  • Key findings suggest that DHJSD may regulate important signaling pathways like HIF-1 and PI3K-Akt, with potential therapeutic effects via specific targets, mainly through inflammation control and cell proliferation.

Article Abstract

In this study, network pharmacology and molecular docking technology were used to explore the molecular mechanisms of the Duhuo Jisheng decoction in the treatment of osteoarthritis (OA). The chemical composition of the prescriptions was obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database and the retrieved literature. Targets for the active ingredients were obtained using TCMSP and the Swiss Target Prediction Database. Disease targets were obtained from GeneCards and DisGeNET databases. The online tool, Venny, was used to obtain common targets for drugs and diseases. Protein-protein interactions (PPI) between common targets were analyzed using the search tool for the retrieval of interacting genes/proteins (STRING) database. Common targets were analyzed for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment using the database for annotation, visualization and integrated discovery (DAVID) database. Molecular docking of the first 10 targets and first 10 components was verified using AutoDock Tools software, and the docking diagram was visualized using PyMOL software. After screening, 210 chemical components of the Duhuo Jisheng decoction (DHJSD) were identified. The 253 common targets of drugs and diseases were combined by eliminating repeat values. Based on PPI network analysis, the top ten targets were SRC, STAT3, MAPK3, MAPK1, RELA, PIK3R1, HSP90AA1, TP53, EP300, and AKT1. KEGG analysis showed that DHJSD could regulate the HIF-1, PI3K-Akt, and JAK-STAT signaling pathways. The biological processes involved include inflammatory reactions, the negative regulation of apoptosis, and the positive regulation of cell proliferation. Molecular docking results showed that all targets, except the RELA protein, showed good binding to the compounds, indicating that the 10 components might exert therapeutic effects by binding to the above targets. DHJSD can treat OA by regulating the HIF-1, PI3K-Akt, and JAK-STAT signaling pathways. The proteins involved were SRC, STAT3, MAPK3, MAPK1, and PIK3R1. In this study, network pharmacology was used to predict the mechanism of DHJSD in OA treatment, which was verified by molecular docking to provide experimental research ideas and scientific basis for OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592334PMC
http://dx.doi.org/10.1097/MD.0000000000031009DOI Listing

Publication Analysis

Top Keywords

molecular docking
20
common targets
16
duhuo jisheng
12
jisheng decoction
12
network pharmacology
12
targets
10
pharmacology molecular
8
study network
8
targets drugs
8
drugs diseases
8

Similar Publications

The concise synthesis of O-methyled-inositol derivative and conduritol derivatives was obtained starting from p-benzoquinone. Spectroscopic methods have been performed for characterization of new synthesized compounds. Cyclitols are useful molecules with anticancer, antibiotic, antinutrient and antileukemic activity.

View Article and Find Full Text PDF

This study was undertaken to assess the antioxidant and neuropharmacological potentials of the methanol leaf extract of Acanthus ebracteatus (MAEL) through experimental and in silico methods. The phytochemical screening (PS) and GC-MS (gas chromatography-mass spectrometry) identified 28 phytochemicals with different classes in nature in MAEL. The MAEL revealed better antioxidant activity through various in vitro antioxidant assays.

View Article and Find Full Text PDF

A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (rSCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models.

View Article and Find Full Text PDF

Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.

View Article and Find Full Text PDF

Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!