A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative systems pharmacology model of the amyloid pathway in Alzheimer's disease: Insights into the therapeutic mechanisms of clinical candidates. | LitMetric

AI Article Synopsis

  • A study developed a predictive modeling approach using quantitative systems pharmacology (QSP) to improve the design of clinical trials for Alzheimer's disease (AD), focusing on amyloid beta (Aβ) pathophysiology.
  • The QSP model incorporates Aβ production, aggregation, and interactions with monoclonal antibodies, calibrated using data from previous studies and clinical trials of anti-Aβ treatments.
  • The model shows promise for predicting Aβ load in different patient groups and could enhance the efficiency of future clinical trials by providing insights into biomarker dynamics in the brain and cerebrospinal fluid.

Article Abstract

Despite considerable investment into potential therapeutic approaches for Alzheimer's disease (AD), currently approved treatment options are limited. Predictive modeling using quantitative systems pharmacology (QSP) can be used to guide the design of clinical trials in AD. This study developed a QSP model representing amyloid beta (Aβ) pathophysiology in AD. The model included mechanisms of Aβ monomer production and aggregation to form insoluble fibrils and plaques; the transport of soluble species between the compartments of brain, cerebrospinal fluid (CSF), and plasma; and the pharmacokinetics, transport, and binding of monoclonal antibodies to targets in the three compartments. Ordinary differential equations were used to describe these processes quantitatively. The model components were calibrated to data from the literature and internal studies, including quantitative data supporting the underlying AD biology and clinical data from clinical trials for anti-Aβ monoclonal antibodies (mAbs) aducanumab, crenezumab, gantenerumab, and solanezumab. The model was developed for an apolipoprotein E (APOE) ɛ4 allele carrier and tested for an APOE ɛ4 noncarrier. Results indicate that the model is consistent with data on clinical Aβ accumulation in untreated individuals and those treated with monoclonal antibodies, capturing increases in Aβ load accurately. This model may be used to investigate additional AD mechanisms and their impact on biomarkers, as well as predict Aβ load at different dose levels for mAbs with known targets and binding affinities. This model may facilitate the design of scientifically enriched and efficient clinical trials by enabling a priori prediction of biomarker dynamics in the brain and CSF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835125PMC
http://dx.doi.org/10.1002/psp4.12876DOI Listing

Publication Analysis

Top Keywords

clinical trials
12
monoclonal antibodies
12
quantitative systems
8
systems pharmacology
8
model
8
alzheimer's disease
8
data clinical
8
apoe ɛ4
8
aβ load
8
clinical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!