Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation, posing a severe threat to wireless communication. Here, we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton (SSPP). After mechanical damage, the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength. Meanwhile, the specially designed SSPP structure exhibits excellent stability and damage resistance. Even if the self-healing process has not been completed or the eventual repair effect is not ideal, the spoof plasmonic meta-waveguide can still maintain reliable performance. Self-healing material enhances strength and durability, while the SSPP improves stability and gives more tolerance to the self-healing process. Our design coordinates the structural design with material synthesis to maximize the advantages of the SSPP and self-healing material, significantly improving the reliability and durability of stretchable microwave transmission lines. We also perform communication quality experiments to demonstrate the potential of the proposed meta-waveguide as interconnects in future body area network systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592613 | PMC |
http://dx.doi.org/10.1038/s41377-022-01005-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!