Background: The mammalian tongue is a highly specialized muscular organ. The Wnt5a ligand regulates muscle development by mediating the activation of several noncanonical Wnt signaling pathways in a receptor context-dependent fashion. However, there is poor information on the expression and behavior of Wnt5a proteins during muscle development of the embryonic tongue.

Methods: The spatiotemporal distribution profiles of the Wnt5a ligand and its receptors, receptor tyrosine kinase-like orphan receptor 2 (Ror2), Frizzled2 (Fzd2), and Frizzled5 (Fzd5), in the developing tongue muscles of prenatal mice from embryonic day 12.5-18.5 were analyzed using immunofluorescence (IF) double staining of a target protein and desmin, a marker protein of myogenic cells. Immunolabeling images were subjected to digital detection analysis using the WinROOF 2018 version 4.19.0 image processing software when needed.

Results: IF signals of the Wnt5a ligand protein and its receptors Ror2 and Fzd2 were detected in developing myoblasts and myotubes of the embryonic tongue, but they were undetectable in mature myofibers equipped with sarcomere structures. Fzd2 expression was specific for desmin-positive developing muscle cells, whereas those of Ror2 and the Wnt5a ligand were widespread and nonselective for desmin-positive cells and that of Fzd5 was predominant in desmin-negative cells of the epithelium and subepithelial mesenchyme.

Conclusion: Developing muscle cells but not mature myofibers of the mouse embryonic tongue express the Wnt5a ligand and its receptors Ror2 and Fzd2, which may mediate Wnt5a signaling in the development processes of tongue muscle fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2022.152017DOI Listing

Publication Analysis

Top Keywords

wnt5a ligand
24
ligand receptors
12
receptors ror2
12
muscle development
12
spatiotemporal distribution
8
wnt5a
8
ror2 frizzled2
8
tongue muscle
8
prenatal mice
8
ror2 fzd2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!