As a typical advanced oxidation process, Fe-persulfate (PDS) oxidation technology has been widely and efficiently reported for enhancing sludge dewaterability. However, higher dosage of Fe must be added, which will restrain the oxidation efficiency of Fe-PDS process. In this work, the oxalic acid (OA)/Fe-PDS process was studied to improve paper sludge dewatering. With the OA dosage of 6 μmol (g total solid (TS)), Fe dosage of 0.3 mmol (g TS), and PDS dosage of 0.6 mmol (g TS), sludge dewaterability was improved more efficiently. The specific resistance to filtration and water content of sludge cake were decreased by 70.7% and 8.0%, respectively. In comparison with Fe-PDS process, the viscosities of sludge suspension and supernatant were further reduced by 3.73% and 51.77%, respectively, and the contents of extracellular polymeric substances fractions were increased. The improved sludge dewaterability in OA/Fe-PDS process was mainly contributed by the synergistic effect of oxidative disintegration by free radicals and flocs re-flocculation, the contributions of which were the orders: metal cations > sulfate radical > hydroxyl radical. OA enhanced the efficient disintegration of sludge flocs, released more bound water, generated more Fe-oxalate complexes, and finally increased the sludge particle size significantly, forming a larger aggregation and obvious cracks. Additionally, the stabilization of several heavy metals was improved due to the chelating capacity of OA. These works will provide a novel approach for sludge dewatering in the PDS oxidation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136966 | DOI Listing |
Membranes (Basel)
January 2025
DVGW-Research Center at the Engler-Bunte-Institute, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Promoting soil structure is considered an essential prerequisite for abandoned mine land restoration. Sewage sludge (SS) has the potential to improve soil structure. However, traditional SS application to improve soil structure requires a lot of SS, potentially exacerbating heavy metal (HM) contamination.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States. Electronic address:
In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!