Advanced in vitro human bone defect models can contribute to the evaluation of materials for in situ bone regeneration, addressing both translational and ethical concerns regarding animal models. In this study, we attempted to develop such a model to study material-driven regeneration, using a tissue engineering approach. By co-culturing human umbilical vein endothelial cells (HUVECs) with human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds with in vitro critically sized defects, the growth of vascular-like networks and three-dimensional bone-like tissue was facilitated. After a model build-up phase of 28 days, materials were artificially implanted and HUVEC and hBMSC migration, cell-material interactions, and osteoinduction were evaluated 14 days after implantation. The materials physiologically relevant for bone regeneration included a platelet gel as blood clot mimic, cartilage spheres as soft callus mimics, and a fibrin gel as control. Although the in vitro model was limited in the evaluation of immune responses, hallmarks of physiological bone regeneration were observed in vitro. These included the endothelial cell chemotaxis induced by the blood clot mimic and the mineralization of the soft callus mimic. Therefore, the present in vitro model could contribute to an improved pre-clinical evaluation of biomaterials while reducing the need for animal experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2022.116597 | DOI Listing |
Front Bioeng Biotechnol
December 2024
Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
In mammalian species, neural tissues cannot regenerate following severe spinal cord injury (SCI), for which stem cell transplantation is a promising treatment. Neural stem cells (NSCs) have the potential to repair SCI; however, in unfavourable microenvironments, transplanted NSCs mainly differentiate into astrocytes rather than neurons. In contrast, bone mesenchymal stem cells (BMSCs) promote the differentiation of NSCs into neurons and regulate inflammatory responses.
View Article and Find Full Text PDFOpen Vet J
November 2024
Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
Background: Pain and inflammation are closely associated with rheumatoid arthritis (RA), which affects the bones and joints.
Aim: While there are a number of therapeutic options for arthritis, their side effects restrict their use and encourage the search for alternative, natural remedies.
Methods: In male rats, we examined the anti-inflammatory and anti-arthritic properties of venom (NHV).
J Dent
December 2024
Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom. Electronic address:
Introduction And Objectives: Clinical studies have shown favorable outcomes following use of platelet rich fibrin (PRF), either alone or in conjunction with biomaterials for alveolar ridge reconstruction (ARR) or guided bone regeneration (GBR) . While PRF application accelerates wound healing and reduces postoperative discomfort, its effects on the alveolar bone gain, as part of ARR or GBR is less clear. Therefore, this study aims to investigate the clinical effectiveness of PRF when used in ARR or GBR, as well as postoperative discomfort following these procedures.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Cosmetic and Plastic Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Electronic address:
Polyhydroxyalkanoates (PHAs) are a group of polymers with a variety of monomers, which are extracted from microorganisms and plants. Due to its good biocompatibility, biodegradability, tunable mechanical property and piezoelectricity, PHAs have been widely used in biomedical fields, such as bone, cartilage, nerve, vascular and skin tissue engineering. This review focuses on the in vivo synthesis, metabolism and biological functions of PHA, and the applications of PHAs in the field of tissue engineering and commercial were also summarized and discussed.
View Article and Find Full Text PDFAustralas J Dermatol
December 2024
Department of Dermatology, Miguel Servet University Hospital, Zaragoza, Spain.
The reconstruction of full-thickness scalp defects with exposed bone can be challenging. A single-stage reconstruction could be the preferred option for patients with multiple comorbidities. We propose using a dermal regeneration template (Matriderm Flex) and full-thickness skin grafts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!