Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters. We reviewed the salinity tolerance of widespread non-halophyte macrophytes through an overview of salinity tolerance mechanisms, their tolerance classification, and salinity effects at different levels of organization: from individuals to ecosystems. Thus, we demonstrated that widespread macrophytes that inhabit freshwaters display efficient salinity tolerance to salinity levels between 5 and 10 g L, and only a few species display tolerance to salinities higher than 10 g L. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L. Emergent, floating and submerged species showed no significant difference in salinity tolerance. Salinity stress symptoms in freshwater macrophytes are somewhat similar to those of terrestrial plants and can show up even at slight salinity increases. Salinities higher than 1 g L can negatively affect both physiology and diversity of non-halophyte macrophytes and cause long-term - and not well understood - changes in freshwater ecosystems. Salinization of freshwater ecosystems, among others threats, in combination with climate change, raise concerns about the future ecological status of freshwater ecosystems and the services they can provide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159608 | DOI Listing |
J Exp Bot
January 2025
Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA.
Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFChoosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
This study investigated whether the galactooligosaccharide (GOS)-metabolism-related genes (GOS-cluster) in contribute to alleviating glucose and lipid metabolic disorders in type 2 diabetic mice. Genomic analysis of 69 strains based on the GOS-cluster, combined with in vitro fermentation experiments, revealed that high-GOS-cluster strains (≥24 MFS, ≥39 GOS-cluster) demonstrated superior GOS utilization and bile salt tolerance. In vivo the high-GOS-cluster strains resulted in a significant reduction of blood glucose levels by 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!