Flow cytometry based immunophenotyping provides prime insight into cellular population composition and characteristics, and is widely used in basic and clinical research. Challenges in processing peripheral blood samples in a timely manner necessitate protocol adaptations and utilization of fixatives. Fixation, however, may introduce artifacts to the flow cytometry readout. We performed a comparative flow cytometry immunophenotyping analysis of 13 immune cell populations in the whole blood using a staining protocol with and without fixation step. Freshly procured human peripheral blood samples were stained with a panel of 33 fluorochrome-conjugated antibodies. Samples were processed using a protocol with or without a paraformaldehyde-based fixation step, and matching sample pairs were analyzed by flow cytometry. Our results show that paraformaldehyde-based fixation, in comparison to matched unfixed samples, did not significantly affect population distribution and frequency for: B cells, Plasmablasts, Dendritic cells, NK cells, Granulocytes, Neutrophils, Eosinophils, or Hematopoietic Stem/Progenitor Cells. However, fixation led to significant marker shifts in the subpopulation distribution in CD4, T regulatory, CD8, Monocytes, and Basophils. These results indicate the importance of pre-experimental assessment of fixation-introduced artifacts in the flow cytometry output when considering the feasibility of fresh processing. This is especially important for samples analyzed using comprehensive exploratory immunoprofiling panels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2022.113379DOI Listing

Publication Analysis

Top Keywords

flow cytometry
20
peripheral blood
12
comparative flow
8
immunophenotyping analysis
8
blood samples
8
artifacts flow
8
fixation step
8
paraformaldehyde-based fixation
8
fixation
6
flow
5

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: We identified small molecule tricyclic pyrone compound CP2 as a mild mitochondrial complex I (MCI) inhibitor that induces neuroprotection in multiple mouse models of AD. One of the major concerns while targeting mitochondria is the production of reactive oxygen species (ROS). CP2 consists of two diastereoisomers, D1 and D2, with distinct activity and toxicity profiles.

View Article and Find Full Text PDF

Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.

View Article and Find Full Text PDF

Background: Breast cancer is a leading cause of cancer-related mortality among women globally, with triple-negative breast cancer (TNBC) being particularly aggressive. Delphinidin (Dp), an anthocyanin monomer, has shown promising health benefits.

Objective: This study investigates the effects of Dp on TNBC and aims to elucidate its specific mechanisms of action.

View Article and Find Full Text PDF

Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!