Multi-scale model of lumen formation via inverse membrane blebbing mechanism during sprouting angiogenesis process.

J Theor Biol

Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada.

Published: January 2023

Cancer is one of the leading causes of mortality and morbidity among people worldwide. Cancer appears as solid tumors in many cases. Angiogenesis is the growth of blood vessels from the existing vasculature and is one of the imperative processes in tumor growth. Another vital phenomenon for formation and functionality of this vasculature network is lumen formation. The results of recent studies indicate the importance of blood pressure in this mechanism. Computational modeling can study these processes in different scales. Hence, wide varieties of these models have been proposed during recent years. In this research, a multi-scale model is developed for the angiogenesis process. In the extracellular scale, the growth factor concentration is calculated via the reaction diffusion equation. At the cellular scale, growth, migration, and the adhesion of endothelial cells are modeled by the Potts cellular model. At the intra-cellular scale by considering biochemical signals, a Boolean network model describes migration, division, or apoptosis of endothelial cells. A stochastic model developed for lumen formation via inverse membrane blebbing mechanism. A CFD simulation was also used to investigate the role of pulsated blood pressure in the inverse membrane blebbing mechanism. The lumen formation model shows stochastic behavior in blebs expansion and lumen expansion. Comparing the stochastic model's results with the CFD simulation also shows the vital role of pressure pulse and the topology of the blebs in bleb retraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2022.111312DOI Listing

Publication Analysis

Top Keywords

lumen formation
16
inverse membrane
12
membrane blebbing
12
blebbing mechanism
12
multi-scale model
8
formation inverse
8
angiogenesis process
8
blood pressure
8
model developed
8
scale growth
8

Similar Publications

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF

Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).

View Article and Find Full Text PDF

Background: UK Biobank data show mutations related to the iron disorder hemochromatosis can approximately double the risk of dementia, in particular clinically diagnosed vascular dementia. Insights into the etiology of this dementia may be provided by cerebrovasculopathy in our new "Aβ+Iron" mouse model, which combines hemochromatosis-related mutations and amyloidosis, with increases in soluble Aβ species and plaques. This was created by crossing an established APP/PS1 model of β-amyloidosis with our reported HfexTfr2 model of hemochromatosis-related mutations exhibiting brain iron dyshomeostasis (Heidari Mol.

View Article and Find Full Text PDF

We investigated the influence of false lumen (FL) status on the systemic inflammatory response triggered by acute aortic dissection (AAD) using cytokine profiling. The study included 44 patients with AAD. Patients were divided between those with a thrombosed FL (Group T, n = 21) and those with a non-thrombosed FL (Group P, n = 23).

View Article and Find Full Text PDF

Drug inhibition and substrate transport mechanisms of human VMAT2.

Nat Commun

January 2025

Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!