Determinants of oxygen utilization in breast cancer: Similarities between heart failure with preserved ejection fraction.

Prog Cardiovasc Dis

Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Hospital, Department of Cardiology, Fitzroy, VIC, Australia.

Published: December 2022

AI Article Synopsis

  • Women with breast cancer (BC) experience reduced exercise tolerance and fatigue, similar to those with heart failure with preserved ejection fraction (HFpEF), impacting their physical function and quality of life.
  • The review examines how issues in oxygen transport, particularly through cardiac, vascular, and skeletal muscle functions, contribute to exercise intolerance in BC survivors.
  • It suggests that chemotherapy and unhealthy lifestyle choices may heighten the risk of developing HFpEF in women who have undergone treatment for breast cancer.

Article Abstract

Reduced exercise tolerance and fatigue are hallmark features in both breast cancer (BC) and heart failure with preserved ejection fraction (HFpEF) and are associated with decreased physical function and quality of life. This brief review focuses on the mechanisms of exercise intolerance in women with BC across the survivorship continuum and highlights how these disturbances within the oxygen transport cascade are similar to that of HFpEF patients. Specifically, the role that impaired cardiac, peripheral vascular and skeletal muscle function play in limiting peak oxygen uptake are discussed. We propose that women with BC are at increased risk of developing HFpEF potentially due to the adverse effects of chemotherapy and concurrent adverse lifestyle behaviors on cardiovascular and skeletal muscle function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pcad.2022.10.005DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
skeletal muscle
8
muscle function
8
determinants oxygen
4
oxygen utilization
4
utilization breast
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!