Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling.

Biosens Bioelectron

School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China. Electronic address:

Published: January 2023

RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ceI) through a Michael addition reaction. The N1-cyanoethyl group of ceI compromises the hydrogen bond between ceI and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114821DOI Listing

Publication Analysis

Top Keywords

ales method
16
inosine
13
quantitative site-specific
12
site-specific detection
12
detection inosine
12
level inosine
12
inosine modification
8
acrylonitrile labeling-mediated
8
labeling-mediated elongation
8
elongation stalling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!