RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ceI) through a Michael addition reaction. The N1-cyanoethyl group of ceI compromises the hydrogen bond between ceI and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!