Conventional Hg visual sensors are unsustainable, hindering their practical application for improved water quality and health. In order to address this challenge, herein, N, S co-doped carbon nanodots (NS-CDs) were prepared and well characterized, presented the fluorescent monitoring for Hg over other metal ions with the limit of detection (LOD) of 0.47 µM. Next, the CDs were successfully modified by thymine without any fluorescence labelling (referred to as T-NS-CDs). The sensitivity to Hg cloud be noticeable enhanced due to the formation of T-Hg-T specific base pairs. Accordingly, the LOD was calculated with values as low as 1.56 nM. Furthermore, Hg could be released and complexed with antidote (meso-2,3-dimercaptosuccinic acid) (DMSA-Hg), being the responsible for the reversible interconversion between T-Hg-T and DMSA-Hg. Interestingly, the proposed sensing system also applies to the fluorescent sensing for Hg in tap water with satisfactory recoveries (96.97 %-101.38 %, RSD < 2 %). Thus, by simply combination of elemental doping and surface functionalization, the surface state and functionalities of CDs could be tailorable, endowing the fluorometric sensing towards Hg in environmental system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121998DOI Listing

Publication Analysis

Top Keywords

co-doped carbon
8
reversible detection
4
detection hgii
4
hgii pure
4
pure water
4
water based
4
based thymine
4
thymine modified
4
modified nitrogen
4
nitrogen sulfur
4

Similar Publications

High-Coordination and Nb-Bridging of Bimetallic Amorphous P-Nb-W-P Clusters in Carbon Nanospheres for High-Performance Sodium-Ion Hybrid Capacitors.

Adv Sci (Weinh)

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.

Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).

View Article and Find Full Text PDF

Iron/phosphorus co-doped carbon nanozyme for colorimetric sensing of organophosphorus pesticides in food.

Anal Methods

January 2025

Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 400054, P. R. China.

In this work, a peroxidase-like (POD-like) nanozyme of Fe/P-NC was synthesized by doping phosphorus (P) and nitrogen (N) to manipulate iron (Fe) activity centers, which showed catalytic activity and kinetics comparable to those of natural HRP. Based on the efficient POD-like activity of the Fe/P-NC nanozyme and cascaded catalytic reactions with acetylcholinesterase (AChE), we constructed a colorimetric, affordable and sensitive sensing platform to detect organophosphorus pesticides (OPs). In the presence of AChE, the POD-like activity of the prepared Fe/P-NC was suppressed, which weakened the Fe/P-NC-catalyzed oxidation of TMB.

View Article and Find Full Text PDF

Interface engineering and electronic modulation enable precise tuning of the electronic structure, thereby maximizing the efficacy of active sites and significantly enhancing the activity and stability of the electrocatalyst. Herein, a hybrid material composed of Ni-modified CoS nanoparticles ((Co, Ni)S) encapsulated within an N, S co-doped carbon matrix (SNC) and anchored onto S-doped carbonized wood fibers (SCWF) is synthesized using a straightforward simultaneous carbonization and sulfidation approach. Density functional theory (DFT) calculations reveal that the highly electronegative Ni element promotes electron cloud migration from Co to Ni, shifting the d-band center of Co closer to the Fermi level.

View Article and Find Full Text PDF

New strategy for the utilization of invasive species: A tert-butylhydroquinone electrochemical platform based on Solidago canadensis L.

Food Chem

January 2025

Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. Electronic address:

Tert-butylhydroquinone (TBHQ) is a widely used synthetic phenolic antioxidant found in edible oils and other fried foods. Nevertheless, the excess use of TBHQ can reduce food quality and impact public health. In this paper, we reported the synthesis of a nanocomposite consisting of carbon and nitrogen co-doped nickel oxide (NiO-N/C-700), which was used to modify a pencil graphite electrode for the sensitive detection of TBHQ.

View Article and Find Full Text PDF

A novel and high-performance tumor inhibitor of La, N co-doped carbon dots for U251 and LN229 cells.

Colloids Surf B Biointerfaces

January 2025

Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:

To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!