Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pile-up between adjacent nuclear pulses is unavoidable in the actual detection process. Some scholars have tried to apply deep learning techniques to identify pile-up nuclear pulse parameters. However, traditional deep learning recurrent neural networks (RNNs) suffer from inefficient pulse recognition and poor recognition of pile-up nuclear pulses with short intervals between adjacent pulses. In this paper, a Transformer model with an attention mechanism as the core to recognize pile-up nuclear pulses is innovatively applied, aiming to provide a more accurate and efficient method for pile-up nuclear pulse recognition. Thus, it gives a better help for the spectrum correction with a high count rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2022.110515 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!