Cyproconazole (CPZ) is a broad-spectrum fungicide that is widely used around the world. CPZ can persist in water which raised concerns about its potential adverse effects on aquatic life. In this study, the stereoselective toxicity, bioaccumulation, elimination, and kinetic biotransformation in zebrafish were investigated. The LC of 96 h acute toxicity was 15.88, 19.68, 26.99, and 17.10 mg/L for SR-, SS-, RS-, and RR-CPZ, respectively. The uptake and elimination experiment showed the bioconcentration factor in order of SR- > RR- > SS- > RS-CPZ at the exposure concentration of 0.1 and 1 mg/L. In the depuration stage, CPZ isomers were rapidly eliminated by 99% within 24 h. Moreover, the oxidative stress responses (POD, SOD, and CAT) were stereoselectively induced by CPZ stereoisomers, the activity of POD was significantly increased in all CPZ treatment groups compared to the control while the activity of CAT exhibited a concentration-dependent decrease in the CPZ treatment group. Multiple metabolic pathways of CPZ in zebrafish were proposed for the first time and 7 phase I metabolites and 25 phase II conjugates were found. This study determined the potential toxicity of CPZ to zebrafish and provided a strategy for the risk evaluation of CPZ stereoisomers in aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2022.106330 | DOI Listing |
J Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFeNeuro
January 2025
Graduate School of Pharmaceutical Science, Tokushima Bunri University, Sanuki 769-2193, Japan
Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on interhemispheric connectivity via the corpus callosum (CC).
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
September 2024
Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
J Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. Electronic address:
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Front Hum Neurosci
December 2024
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China.
Introduction: Visual feedback plays a crucial role in goal-directed tasks, facilitating movement preparation and execution by allowing individuals to adjust and optimize their movements. Enhanced movement preparation and execution help to increase neural activity in the brain. However, our understanding of the neurophysiological mechanisms underlying different types of visual feedback during task preparation and execution remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!