Maresin1 ameliorates ventricular remodelling and arrhythmia in mice models of myocardial infarction via NRF2/HO-1 and TLR4/NF-kB signalling.

Int Immunopharmacol

Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China. Electronic address:

Published: December 2022

Ventricular remodelling and arrhythmias are the main factors that affect the quality of life of patients with myocardial infarction (MI). Maresin 1 (Mar1) is associated with antioxidative and anti-inflammatory effects. However, the mechanisms underlying the effects of Mar1 in MI remain unclear. In this study, we aimed to explore the role and potential mechanisms of Mar1 in a mouse model of MI. The mice were divided into four groups: Sham, Sham + Mar1, MI, and MI + Mar1. In the MI groups, the left anterior descending coronary artery of the mice was ligated for 28 days, while this ligation was not conducted in the Sham groups. Mar1 was injected into mice in the Sham + Mar1 and MI + Mar1 groups. H9c2 cells were cultured in vitro under hypoxic conditions for MI models, and then Mar1 was added to the medium for 24 h. Our data demonstrated that Mar1 activated NRF2/HO-1 signalling and inhibited TLR4/NF-kB signalling in MI. These activities lead to inhibition of the release of inflammatory cytokines, reduction of myocardial apoptosis and interstitial fibrosis, decreased susceptibility to ventricular arrhythmias, and improved cardiac function. Similarly, our in vitro analyses showed that Mar1 inhibited inflammatory signalling by enhancing the antioxidative function of NRF2/HO-1 signalling. Furthermore, Mar1 inhibited hypoxia-activated apoptosis in cardiomyocytes. Taken together, our data demonstrate that Mar1 ameliorates ventricular remodelling and arrhythmias in mice post-MI via the activation of NRF2/HO-1 signalling and inhibition of the TLR4/NF-kB signalling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109369DOI Listing

Publication Analysis

Top Keywords

ventricular remodelling
12
tlr4/nf-kb signalling
12
nrf2/ho-1 signalling
12
mar1
9
ameliorates ventricular
8
myocardial infarction
8
remodelling arrhythmias
8
sham + mar1 mi + mar1
8
mi + mar1 groups
8
mar1 inhibited
8

Similar Publications

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Exploring the Impact of Clonal Hematopoiesis on Heart Failure and Remodeling in Aortic Stenosis.

JACC Adv

February 2025

Division of Cardiology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea.

View Article and Find Full Text PDF

Left ventricular non-compaction (LVNC) is a rare primary cardiomyopathy with genetic etiology, resulting from an abnormality of myocardial development during embryogenesis. It carries an elevated risk of left ventricular dysfunction, thromboembolic events and malignant arrhythmias. We report the case of LVNC associated with paroxysmal atrial fibrillation and ankyrin 2 () mutation at the genetic test.

View Article and Find Full Text PDF

Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.

Regen Biomater

December 2024

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.

Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), particularly in patients with type 2 diabetes mellitus (T2DM), is increasingly recognized as a multi-system disease that affects both hepatic and cardiovascular health. This study explores the association between MASLD-related liver fibrosis and cardiac dysfunction, focusing on how liver fibrosis contributes to cardiac remodeling and dysfunction. Cernea 's research highlights the strong correlation between liver fibrosis and changes in left ventricular mass, left atrial dimensions, and systolic and diastolic function in diabetic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!