Background And Objectives: Pre-diabetes has been identified as an intermediate diagnosis and a sign of a relatively high chance of developing diabetes in the future. Diabetes has become one of the most frequent chronic disorders in children and adolescents around the world; therefore, predicting the onset of pre-diabetes allows a person at risk to make efforts to avoid or restrict disease progression. This research aims to create and implement a cross-validated machine learning model that can predict pre-diabetes using non-invasive methods.
Methods: We have analysed the national representative dataset of children and adolescents (5-19 years) to develop a machine learning model for non-invasive pre-diabetes screening. Based on HbA1c levels the data (n = 26,567) was segregated into normal (n = 23,777) and pre-diabetes (n = 2790). We have considered eight features, six hyper-tuned machine learning models and different metrics for model evaluation. The final model was selected based on the area under the receiver operator curve (AUC), Cohen's kappa and cross-validation score. The selected model was integrated into the screening tool for automated pre-diabetes prediction.
Results: The XG boost classifier was the best model, including all eight features. The 10-fold cross-validation score was highest for the XG boost model (90.13%) and least for the support vector machine (61.17%). The AUC was highest for RF (0.970), followed by GB (0.968), XGB (0.959), ETC (0.918), DT (0.908), and SVM (0.574) models. The XGB model was used to develop the screening tool.
Conclusion: We have developed and deployed a machine learning model for automated real-time pre-diabetes screening. The screening tool can be used over computers and can be transformed into software for easy usage. The detection of pre-diabetes in the pediatric age may help avoid its enhancement. Machine learning can also show great competence in determining important features in pre-diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2022.107180 | DOI Listing |
J Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFJ Occup Health
January 2025
Panasonic Corporation, Department Electric Works Company/Engineering Division, Osaka, Japan.
Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.
Methods: Train data (n=190, age 54.
Esophagus
January 2025
Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!