Due to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically- and chemically-modified brewers' spent grain (BSG) were prepared and subjected to 12-week soil burial test simulating their biodegradation in natural environment. BSG stabilizing effect on polymer matrix affected by the content of melanoidins and antioxidant phytochemicals, along with the impact of diisocyanate applied to strengthen the interfacial adhesion. Biocomposites showed 25-35 wt% mass loss over 12 weeks resulting from swelling of BSG filler and sample microcracking, which increased surface roughness by 247-448 %. The degree of decomposition was partially reduced by BSG modifications pointing to the stabilizing effect of melanoidins and phytochemicals, and enhanced interfacial adhesion. Soil burial-induced structural changes enhanced biocomposites' thermal stability determined by thermogravimetric analysis shifting decomposition onset by 14.4-32.0 °C due to the biodegradation of lower molecular weight starch macromolecules confirmed by differential scanning calorimetry. For unfilled Mater-Bi, it caused an average 32 % reduction in complex viscosity and storage modulus captured by oscillatory rheological measurements. Nonetheless, the inverse effect was noted for biocomposites where modulus increased even by one order of magnitude due to the swelling of BSG particles and amorphous phase decomposition. Presented results indicate that BSG promotes soil degradation of Mater-Bi and its rate can be engineered by biofiller treatment elaboration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.10.007DOI Listing

Publication Analysis

Top Keywords

brewers' spent
8
spent grain
8
sustainable mater-bi-based
8
mater-bi-based biocomposites
8
interfacial adhesion
8
swelling bsg
8
bsg
6
biocomposites
5
impact thermomechanical
4
thermomechanical chemical
4

Similar Publications

This study investigates the use of Brewers' Spent Grains (BSGs) as a sustainable biocomposite building materials, using cornstarch as a biopolymer binder. BSG aggregates are compared with hemp shives, a conventional aggregate known for its thermal properties. Starch is employed as a natural binder in three different formulations to further reduce the carbon footprint of the building material.

View Article and Find Full Text PDF

Barley (Hordeum vulgare) is widely used in the production of beer and distilled beverages, generating a nutrient-rich by-product known as brewer's spent grain (BSG). This study investigates the potential of brewer's spent grain flour (BSGF) as a functional ingredient to enhance the nutritional profile of bakery products, specifically chocolate cakes, while contributing to waste reduction in the food industry. The effects of partially substituting wheat flour with BSGF at 40% and 60% levels were assessed.

View Article and Find Full Text PDF

Waste-to-Taste: Transforming Wet Byproducts of the Food Industry into New Nutritious Foods.

Chimia (Aarau)

December 2024

Sustainable Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Food and beverage production generates enormous amounts of spent residues in the form of pomaces, pulps, grains, skins, seeds, etc. Although these sidestreams remain nutritious, their conversion to foods can be complicated by issues of digestibility and processing, particularly when the residues are wet and therefore highly susceptible to microbial degradation. Ideally, these sidestreams could be stabilized and then re-circulated into food, instead of being diverted to waste, animal feed, or biofuels.

View Article and Find Full Text PDF

Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain.

View Article and Find Full Text PDF

Revalorisation of brewer's spent grain for biotechnological production of hydrogen with .

Front Bioeng Biotechnol

November 2024

Institute of Viticulture and Agri-Food Research (IVAGRO), International Campus of Excellence (ceiA3), University of Cadiz, Cadiz, Spain.

Introduction: Agro-industrial wastes are generated in huge amounts triggering damages to the environment and human health. Therefore, there is an urgent necessity for its revalorisation into high-value compounds, including biofuels. One such wastes is the brewer's spent grain (BSG), a by-product of the beer industry, which is produced in vast quantities worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!