Actin Architecture Steers Microtubules in Active Cytoskeletal Composite.

Nano Lett

CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France.

Published: November 2022

Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications. While these assays involve controlling the filament direction and speed, either as a sensory readout or a functional feature, designing a subtle control embedded in the assay is an ongoing challenge. Here, we investigate the interaction between gliding microtubules and networks of actin filaments. We demonstrate that the microtubule's behavior depends on the actin architecture. Both unbranched and branched actin decelerate microtubule gliding; however, an unbranched actin network provides additional guidance and effectively steers the microtubules. This effect, which resembles the recognition of cortical actin by microtubules, is a conceptually new means of controlling the filament gliding with potential application in the design of active materials and cytoskeletal nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c03117DOI Listing

Publication Analysis

Top Keywords

actin architecture
8
steers microtubules
8
motility assays
8
controlling filament
8
actin
6
architecture steers
4
microtubules
4
microtubules active
4
cytoskeletal
4
active cytoskeletal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!