AI Article Synopsis

Article Abstract

Improving the quality of life in developed countries has contributed to an increase in its duration, which has led to an increase in the number of reported cases of Alzheimer's disease (AD) and Parkinson's disease (PD) in the world. Today, there are 26.6 million patients with AD in the world and it is suspected that by 2050 the number of such patients may increase four times. Additionally, PD in different countries is recorded among people above 60-65 years old at a level of 167 to 5703 per 100.000 population. The latest studies have made it possible to formulate the main mechanisms of the «microbiota-gut-brain» axis associated with the pathogenesis of some neurodegenerative diseases. In this review, we summarize the currently available information on the possible role of the gut microbiota in the AD and PD development. It was shown that oxidative stress is one of the main pathogenetic mechanisms of the development of neurodegenerative diseases. In addition, the deposition of lipopolysaccharides of gram-negative bacteria and amyloid of microbial origin in the brain tissue of patients with impaired permeability of the intestinal barrier plays an important role in AD. In PD, the synthesis of α-synuclein produced by bacteria and neuroinflammation are of the greatest importance. Knowledge of these mechanisms will allow the development of psychobiotics, which will reduce the risk of neurodegeneration in AD and PD.

Download full-text PDF

Source
http://dx.doi.org/10.17116/jnevro202212210157DOI Listing

Publication Analysis

Top Keywords

microbiota development
8
development neurodegenerative
8
neurodegenerative diseases
8
role human
4
human microbiota
4
development
4
neurodegenerative diseases]
4
diseases] improving
4
improving quality
4
quality life
4

Similar Publications

Primary sclerosing cholangitis is one of the most challenging conditions in hepatology, and due to our limited understanding of its pathogenesis, no causal therapies are currently available. While it was long assumed that a minority of people with IBD also develop PSC, which is sometimes labeled an extraintestinal manifestation of IBD, the clinical phenotype, genetic and intestinal microbiota associations strongly argue for PSC-IBD being a distinct form of IBD, existing alongside ulcerative colitis and Crohn's disease. In fact, the liver itself could contribute to intestinal pathology, clinically overt in 60 - 80 % of patients.

View Article and Find Full Text PDF

Background: Aging-related comorbidities are more common in people with human immunodeficiency virus (HIV) compared to people without HIV. The gut microbiome may play a role in healthy aging; however, this relationship remains unexplored in the context of HIV.

Methods: 16S rRNA gene sequencing was conducted on stool from 1409 women (69% with HIV; 2304 samples) and 990 men (54% with HIV; 1008 samples) in the MACS/WIHS Combined Cohort Study.

View Article and Find Full Text PDF

The neonate respiratory microbiome.

Acta Physiol (Oxf)

February 2025

Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.

Over the past two decades, it has become clear that against earlier assumptions, the respiratory tract is regularly populated by a variety of microbiota even down to the lowest parts of the lungs. New methods and technologies revealed distinct microbiome compositions and developmental trajectories in the differing parts of the respiratory tract of neonates and infants. In this review, we describe the current understanding of respiratory microbiota development in human neonates and highlight multiple factors that have been identified to impact human respiratory microbiome development including gestational age, mode of delivery, diet, antibiotic treatment, and early infections.

View Article and Find Full Text PDF

Emerging research has highlighted the significant role of the gut microbiota in atherosclerosis (AS), with microbiota-targeted interventions offering promising therapeutic potential. A central component of this process is gut-derived metabolites, which play a crucial role in mediating the distal functioning of the microbiota. In this study, a comprehensive microbiome-metabolite analysis using fecal and serum samples from patients with atherosclerotic cardiovascular disease and volunteers with risk factors for coronary heart disease and culture histology is performed, and identified the core strain Bacteroides ovatus (B.

View Article and Find Full Text PDF

An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer.

J Oral Microbiol

January 2025

Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China.

Background: This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction.

Methods: Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!