Human platelet mitochondria improve the mitochondrial and cardiac function of donor heart.

Pflugers Arch

Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Chong No Gu, 103 Dae Hak Ro, Seoul, 03080, Republic of Korea.

Published: February 2023

Mitochondria transplantation emerges as an effective therapeutic strategy for ischemic-related diseases but the roles in the donor hearts for transplant remain unidentified. Here, we investigated whether the preservation of the donor heart with human platelet-derived mitochondria (pl-MT) could improve mitochondrial and cardiac function. Incubation with pl-MT resulted in the internalization of pl-MT and the enhancement of ATP production in primary cardiomyocytes. In addition, incubation of rat hearts with pl-MT ex vivo for 9 h clearly demonstrated pl-MT transfusion into the myocardium. Mitochondria isolated from the hearts incubated with pl-MT showed increased mitochondrial membrane potential and greater ATP synthase activity and citrate synthase activity. Importantly, the production of reactive oxygen species from cardiac mitochondria was not different with and without pl-MT incubation. Functionally, the heartbeat and the volume of coronary circulation perfusate were significantly increased in the Langendorff perfusion system and the viability of cardiomyocytes was increased from pl-MT hearts.Taken together, these results suggest that incubation with Pl-MT improves mitochondrial activity and maintains the cardiac function of rat hearts with prolonged preservation time. The study provides the proof of principle for pl-MT application as an enhancer of the donor heart.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-022-02763-yDOI Listing

Publication Analysis

Top Keywords

cardiac function
12
donor heart
12
pl-mt
10
improve mitochondrial
8
mitochondrial cardiac
8
mitochondria pl-mt
8
incubation pl-mt
8
rat hearts
8
synthase activity
8
mitochondria
5

Similar Publications

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Individuals afflicted with heart failure complicated by sepsis often experience a surge in blood glucose levels, a phenomenon known as stress hyperglycemia. However, the correlation between this condition and overall mortality remains unclear. 869 individuals with heart failure complicated by sepsis were identified from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and categorized into five cohorts based on their stress hyperglycemia ratio (SHR).

View Article and Find Full Text PDF

Intracardiac echocardiography (ICE) has been used to guide radio-frequency catheter ablation (RFCA) for better catheter navigation and less radiation exposure in treating atrial fibrillation (AF). This retrospective cohort study enrolled 227 AF patients undergoing ICE- or traditional fluoroscopy (TF)-guided RFCA for AF in a tertiary hospital. ICE was used more often in patients with atrial tachycardia [odds ratio (OR) 3.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!