The FGF19-FGFR4 signaling pathway has been extensively studied as a promising target for the treatment of hepatocellular carcinoma (HCC). Several FGFR4-selective inhibitors have been developed, but none of them receives approval. Additionally, acquired resistance caused by FGFR4 gatekeeper mutations is emerging as a serious limitation for these targeted therapies. Herein, we report a novel series of 5-formyl-pyrrolo[3,2-]pyridine derivatives as new reversible-covalent inhibitors targeting wild-type and gatekeeper mutant variants of FGFR4 kinase. The representative compound exhibited single-digit nanomolar activity against wild-type FGFR4 and the FGFR4 mutant variants in biochemical and Ba/F3 cellular assays, while sparing FGFR1/2/3. Furthermore, showed significant antiproliferative activity against Hep3B, JHH-7, and HuH-7 HCC cells with IC values of 37, 32, and 94 nM, respectively. MALDI-TOF-MS and X-ray protein crystallography studies were consistent with acting as a reversible-covalent inhibitor of FGFR4, serving as a promising lead compound for further anticancer drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c01319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!