A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a hydrocolloid bio-ink for 3D bioprinting. | LitMetric

Development of a hydrocolloid bio-ink for 3D bioprinting.

Biomater Sci

Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey.

Published: November 2022

A new generation of bio-inks that are soft, viscous enough, stable in cell culture, and printable at low printing pressures is required in the current state of 3D bioprinting technology. Hydrogels can meet these features and can mimic the microenvironment of soft tissues easily. Hydrocolloids are a group of hydrogels which have a suitable gelling capacity and rheological properties. According to the literature, polysaccharide-based hydrocolloids are used in the food industry, wound healing technologies, and tissue engineering. Quince seed hydrocolloids (QSHs), which consist of mostly glucuronoxylan, can easily be obtained from quince seeds by water extraction. In this study, the use of a QSH as a bio-ink was investigated. The suitability of QSH for the printing process was assessed by rheological, uniformity and pore factor analyses. Appropriate printing parameters were determined and the characterization of the bioprinted QSHs was performed by SEM analysis, water uptake capacity measurement, and protein adsorption assay. The bioprinted QSHs had excellent water uptake capacity and showed suitable protein adsorption behaviour. Analyses of the biocompatibility and cellular viability of bioprinted QSHs were conducted using NIH-3T3 fibroblast cells and the results were found to be high during short and long-term cell culture periods. It was proved that QSH is a highly promising bio-ink for 3D bioprinting and further tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm01184kDOI Listing

Publication Analysis

Top Keywords

bioprinted qshs
12
bio-ink bioprinting
8
cell culture
8
tissue engineering
8
water uptake
8
uptake capacity
8
protein adsorption
8
development hydrocolloid
4
hydrocolloid bio-ink
4
bioprinting generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!