Probiotics are delivered orally for treating gastrointestinal tract (GIT) infections; thus, they should be protected from the harsh environment of the GIT, such as through microencapsulation. Here, we microencapsulated cells of the probiotic Lacticaseibacillus rhamnosus GG via the liquid-droplet-forming method and evaluated them for oral delivery of bovine lactoferrin (bLf). Briefly, sodium alginate capsules (G-capsules) were first prepared, crosslinked with calcium chloride (C-capsules), and then modified with disodium hydrogen phosphate (M-capsules). All capsules showed good swelling behavior in the order of G-capsules > C-capsules > M-capsules in simulated gastric fluid (SGF, pH 2) and simulated intestinal fluid (SIF, pH 7.2). FE-SEM observations showed the formation of porous surfaces and successful microencapsulation of L. rhamnosus GG cells. The microencapsulated probiotics showed 85% and 77% viability in SGF and SIF, respectively, after 300 min. Compared to the 65% and 70% viability of gelation-encapsulated and crosslinking-encapsulated L. rhamnosus GG cells, respectively, the mineralization-encapsulated cells showed up to 85% viability after 300 min in SIF. The entrapment of bLf in the mineralization-encapsulated L. rhamnosus GG cells did not show any toxicity to the cells. FTIR spectroscopy confirmed the successful surface modification of L. rhamnosus GG cells via gelation, crosslinking, and mineralization, along with the entrapment of bLf on the surface of microencapsulated cells. The findings of these studies show that the microencapsulated L. rhamnosus GG cells with natural polyelectrolytes could be used as stable carriers for the oral and sustainable delivery of beneficial biotherapeutics without compromising their viability and the activity of probiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624373 | PMC |
http://dx.doi.org/10.3390/biomimetics7040152 | DOI Listing |
J Med Food
January 2025
Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India.
Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.
View Article and Find Full Text PDFVet World
November 2024
Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia.
Background And Aim: The positive effects of and on growth and feed consumption indicators have been described; however, the underlying mechanisms remain unclear. This study aimed to determine whether the addition of CNCM-I-3699 (2.10 GU/g) and CNCM-I-3698 (2.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Sarcopenia is an age-related muscle disorder that increases risks of adverse clinical outcomes, but its treatments are still limited. Gut microbiota is potentially associated with sarcopenia, and its role is still unclear. To investigate the role of gut microbiota in sarcopenia, we first compared gut microbiota and metabolites composition in old participants with or without sarcopenia.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India.
Osteoporosis is a skeletal condition characterized by the deterioration of bone tissue. The immune system plays a crucial role in maintaining bone homeostasis and combating the development of osteoporosis. Immunoporosis is the term used to describe the recent convergence of research on the immune system's role in osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!