Complex breast cancer (BC) treatment can cause various neurological and psychiatric complications, such as postmastectomy pain syndrome, vestibulocerebellar ataxia, and depression, which can lead to microstructural damage of the white matter tracts of the brain. The purpose of the study is to assess microstructural changes in the white matter tracts of the brain in BC survivors using diffusion tensor imaging (DTI). Single DTI scans were performed on patients ( = 84) after complex BC treatment (i.e., surgery, chemotherapy and/or radiation therapy) and on the control group ( = 40). According to the results, a decrease in the quantitative anisotropy (FDR ≤ 0.05) was revealed in the bilateral corticospinal tracts, cerebellar tracts, corpus callosum, fornix, left superior corticostriatal and left corticopontine parietal in patients after BC treatment in comparison to the control group. A decrease in the quantitative anisotropy (FDR ≤ 0.05) was also revealed in the corpus callosum and right cerebellar tracts in patients after BC treatment with the presence of postmastectomy pain syndrome and vestibulocerebellar ataxia. The use of DTI in patients after BC treatment reveals microstructural properties of the white matter tracts in the brain. The results will allow for the improvement of treatment and rehabilitation approaches in patients receiving treatment for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624319PMC
http://dx.doi.org/10.3390/pathophysiology29040046DOI Listing

Publication Analysis

Top Keywords

white matter
16
matter tracts
16
breast cancer
12
tracts brain
12
patients treatment
12
microstructural properties
8
survivors diffusion
8
diffusion tensor
8
tensor imaging
8
postmastectomy pain
8

Similar Publications

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Introduction: White matter hyperintensity volumes (WMHVs) are disproportionally prevalent in individuals with Alzheimer's disease (AD), potentially reflecting neurovascular injury. We quantify the association between AD polygenic risk score (AD-PRS) and WMHV, exploring single-nucleotide polymorphisms (SNPs) that are proximal to genes overexpressed in cerebrovascular cell species.

Methods: In a UK-Biobank sub-sample (mean age = 64, range = 45-81 years), we associate WMHV with (1) AD-PRS estimated via SNPs across the genome (minus apolipoprotein E [APOE] locus) and (2) AD-PRS estimated with SNPs proximal to specific genes that are overexpressed in cerebrovascular cell species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!