Alzheimer's disease (AD) remains one of the major neurodegenerative diseases overwhelming the world today. Alzheimer's is the most complicated as well as perplexing disease encountering serious global health issues. Alzheimer's disease is well characterized as a general cause of dementia, which includes issues with memory, language, problem-solving, and other cognitive behaviours, such as disabled perception as well as trouble talking due to degeneration of neurons. According to the latest report, there are about 44 million individuals who are currently suffering from dementia, which has been prophesied to extensively grow up to 3-fold by 2050. Alzheimer's disease is usually triggered by numerous associated factors, including depleted amount of acetylcholine (ACh), excessive aggregation of β-amyloid peptide (Aβ), tau hyperphosphorylation with neurofibrillary tangle formation as well as deposition of feeble plaques in a specific portion of the brain (hippocampus and cortex). Besides these superior factors, sometimes AD can be induced or become complex due to several reasons, such as inflammatory mechanisms and oxidative stress. Furthermore, heterocyclic scaffolds comprise assorted implications in the drug design and development process. Heterocycles have also elicited their evolving role as core scaffolds in numerous synthetic derivatives with potent anti-Alzheimer's potential. There are only limited drugs that are present in the market to treat Alzheimer's disease in an efficacious manner. Hence, the identification, design, and development of new anti-Alzheimer's drugs are an emerging need to eradicate complex clinical indications associated with Alzheimer's disease. This review aims to summarize various recent advancements in the medicinal chemistry of heterocycle-based compounds with the following objectives: (1) to represent inclusive literature reports describing the anti-Alzheimer's potential of heterocyclic derivatives; (2) to cast light on recent advancements in the medicinal chemistry of heterocyclic compounds endowed with therapeutic potential against Alzheimer's disease; (3) to summarize the comprehensive correlation of structure-activity relationship (SAR) with the pharmacological responses, including in silico and mechanistic studies to provide ideas related to design and development of lead molecules.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026623666221019152502DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
24
design development
12
anti-alzheimer's potential
8
advancements medicinal
8
medicinal chemistry
8
alzheimer's
7
disease
7
advances development
4
development nitrogen-containing
4
heterocyclic
4

Similar Publications

Background And Objectives: Chronic kidney disease (CKD) is known to be associated with increased plasma phosphorylated tau217 (p-tau217) concentrations, potentially confounding the utility of plasma p-tau217 measurements as a marker of amyloid pathology in individuals with suspected Alzheimer disease (AD). In this study, we quantitatively investigate the relationship of plasma p-tau217 concentrations vs estimated glomerular filtration rate (eGFR) in individuals with CKD with and without amyloid pathology.

Methods: This was a retrospective examination of data from 2 observational cohorts from either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center cohorts.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Introduction: To examine the longitudinal association between estimated pulse wave velocity (ePWV) and cognitive phenotypes in a rural Chinese older population.

Methods: This population-based study included 1857 dementia-free participants (age ≥60 years) who were examined in 2014 and followed in 2018. ePWV was calculated using age and mean blood pressure (MBP).

View Article and Find Full Text PDF

Long-range inputome of prefrontal GABAergic interneurons in the Alzheimer's disease mouse.

Alzheimers Dement

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

Neurodegeneration: 2024 update.

Free Neuropathol

January 2024

Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!