Because of their excellent optical and electrical properties, doped carbon quantum dots (CQDs) are expected to be used in novel film optoelectronic devices such as light-emitting diodes and solar cells. However, these device advancements are currently hindered by the elusive photophysical process of doped CQDs in solid-state films. Here, the optical properties of nitrogen-doped CQD (N-CQD) films are studied using spectro-electrochemical (SEC) methods. A distinctive photoluminescence (PL) enhancement phenomenon is observed, in which the PL intensity of the N-CQD film can be increased in both positive and negative electrochemical potential sweeps. The effect of positive potential on PL enhancement is greater (∼340% at +1.4 V), while that of negative potential is slightly weaker (∼10% at -1.4 V). To the best of our knowledge, no similar brightening process has been reported in all previous SEC studies on a variety of QDs, wherein the emission intensity can only exhibit enhancement under positive or negative potential at most. We propose that the above PL brightening is related to the weakened π-π stacking effect after electrochemical charge injection and nitrogen doping plays a crucial role in it. Finally, a low hysteresis reversible electrochemistry regulation of the PL spectrum can be achieved by increasing electrolyte fluidity with argon gas bubbling to reduce local charge aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr03691fDOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
quantum dots
8
positive negative
8
negative potential
8
electrochemical control
4
control emission
4
enhancement
4
emission enhancement
4
enhancement solid-state
4
solid-state nitrogen-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!