A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on nonstroke dementia screening and cognitive function prediction model for older people based on brain atrophy characteristics. | LitMetric

Background: Brain atrophy is an important feature in dementia and is meaningful to explore a brain atrophy model to predict dementia. Using machine learning algorithm to establish a dementia model and cognitive function model based on brain atrophy characteristics is unstoppable.

Method: We acquired 157 dementia and 156 normal old people.s clinical information and MRI data, which contains 44 brain atrophy features, including visual scale assessment of brain atrophy and multiple linear measurement indexes and brain atrophy index. Five machine learning models were used to establish prediction models for dementia, general cognition, and subcognitive domains.

Results: The extreme Gradient Boosting (XGBoost) model had the best effect in predicting dementia, with a sensitivity of 0.645, a specificity of 0.839, and the area under curve (AUC) of 0.784. In this model, the important brain atrophy features for predicting dementia were temporal horn ratio, cella media index, suprasellar cistern ratio, and the thickness of the corpus callosum genu.

Conclusion: For nonstroke elderly people, the machine learning model based on clinical head MRI brain atrophy features had good predictive value for dementia, general cognitive impairment, immediate memory impairment, word fluency disorder, executive dysfunction, and visualspatial disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660432PMC
http://dx.doi.org/10.1002/brb3.2726DOI Listing

Publication Analysis

Top Keywords

brain atrophy
36
machine learning
12
atrophy features
12
brain
9
atrophy
9
cognitive function
8
based brain
8
atrophy characteristics
8
dementia
8
model based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!