The treatment and disposal of waste biomass and plastics are of great importance to achieve both waste management and resource recycling. In this work, pyrolysis of biomass and plastic blends were investigated to identify the influence of temperature and in situ CaO addition on the production of hydrogen-rich, HCl-free, and low tar content fuel gases. The results show that the increase in temperature and the use of CaO significantly improved both the quantity and quality of the fuel gas and mitigated the formation of tar compounds and HCl. Moreover, H yield was significantly improved from 0.30 to 3.68 mmol/g with the increase in temperature from 550 to 850 °C. Also, the use of in situ CaO significantly increased the H yield by 28-88%. The H/CO ratio was also enhanced from 0.35 to 1.50 with the temperature increase and CaO addition. Tar removal efficiency reached approximately 70.09% with the use of CaO at 850 °C. The produced HCl gas could be effectively absorbed by CaO through dechlorination reactions to form CaClOH at a highest mitigation efficiency of 92.37%. The results could be used to develop clean and efficient treatment technologies of waste biomass and plastics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583305 | PMC |
http://dx.doi.org/10.1021/acsomega.2c04279 | DOI Listing |
Langmuir
January 2025
Laboratory of Advanced Light Alloy Materials and Devices, Yantai Nanshan University, Longkou 265713, China.
Hydrogen gas holds immense promise as a clean fuel source, yet its widespread adoption faces significant challenges in storage and transportation due to its gaseous and highly flammable nature. An increasingly attractive approach to overcoming these limitations involves reacting aluminum (Al) blocks with water to produce hydrogen, providing an alternative distribution mechanism in which Al blocks can be used as "hydrogen storage" for on-demand production at any location. However, current methods suffer poor hydrogen production rates and yields, primarily influenced by the limited contact area between Al and the catalyst, such as Ga-based room-temperature liquid metal.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geomatics Engineering, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.
This study presents a hybrid methodology for planning green spaces to enhance urban sustainability and livability, evaluating the impacts of climate change on cities. Cities, once accommodating a small population, have become major centers of migration and development since the eighteenth century. Rapid urban growth intensifies infrastructure, environmental, and social challenges.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Testing Center for Oil and Gas LEMIGAS, Ministry of Energy and Mineral Resources, Jakarta Selatan 12230 Indonesia.
Indonesia currently calculates CO emissions from gas fuels using Tier 1 emission factors adopted from the Intergovernmental Panel on Climate Change (IPCC). However, this method may not accurately capture the country's specific emission characteristics. To address this, this study aims to derive country-specific CO emission factors for gas fuels, including liquefied petroleum gas (LPG), liquefied gas for vehicles (LGV), natural gas (NG), and liquefied natural gas (LNG), by analyzing fuel samples collected nationwide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Chemical Power Sources (Chongqing University), Chongqing 400044, China.
Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.
View Article and Find Full Text PDFThis study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!