Metasurface Terahertz Perfect Absorber with Strong Multi-Frequency Selectivity.

ACS Omega

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai200083, P. R. China.

Published: October 2022

In this paper, we design a metasurface terahertz perfect absorber with multi-frequency selectivity and good incident angle compatibility using a double-squared open ring structure. Simulations reveal five selective absorption peaks located at 0-1.2 THz with absorption 94.50% at 0.366 THz, 99.99% at 0.507 THz, 95.65% at 0.836 THz, 98.80% at 0.996 THz, and 86.70% at 1.101 THz, caused by two resonant absorptions within the fundamental unit (fundamental mode of resonance absorption, FRA) and its adjacent unit (supermodel of resonance absorption, SRA) in the structure, respectively, when the electric field of the electromagnetic wave is incident perpendicular to the opening. The strong frequency selectivity at 0.836 THz with a -factor of 167.20 and 0.996 THz with a -factor of 166.00 is due to the common effect of the FRA and SRA. Then, the effect of polarized electromagnetic wave modes (TE and TM modes) at different angles of incidence (θ) and the size of the open rings on the device performance is analyzed. We find that for the TM mode, the absorption of the resonance peak changes only slightly at θ = 0-80°, which explains this phenomenon. The frequency shift of the absorption peaks caused by the size change of the open rings is described reasonably by an equivalent RLC resonant circuit. Next, by adjusting two-dimensional materials and photosensitive semiconductor materials embedded in the unit structure, the designed metasurface absorber has excellent tunable modulation. The absorption modulation depth (MD) reaches ≈100% using the conductivity of photosensitive semiconductor silicon (σ), indicating excellent control of the absorption spectrum. Our results can greatly promote the absorption of terahertz waves, absorption spectrum tunability, and frequency selectivity of devices, which are useful in the applications such as resonators, bio-detection, beam-controlled antennas, hyperspectral thermal imaging systems, and sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583645PMC
http://dx.doi.org/10.1021/acsomega.2c05016DOI Listing

Publication Analysis

Top Keywords

absorption
10
metasurface terahertz
8
terahertz perfect
8
perfect absorber
8
multi-frequency selectivity
8
absorption peaks
8
thz
8
0836 thz
8
0996 thz
8
resonance absorption
8

Similar Publications

A general strategy towards activatable nanophotosensitizer for phototoxicity-free photodynamic therapy.

Theranostics

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China.

Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects.

View Article and Find Full Text PDF

Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.

View Article and Find Full Text PDF

Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, National Synchrotron Radiation Laboratory, 42#, South Road of HeZuoHua, 230029, Hefei, CHINA.

Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site.

View Article and Find Full Text PDF

Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO2/CH4 Separation.

Angew Chem Int Ed Engl

January 2025

National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Blk E5, #02-16, 117585, Singapore, SINGAPORE.

Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogenous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).

View Article and Find Full Text PDF

It is well established that the confinement of reactants to two dimensions influences their reactivity. However, such confinement is often dominated by charge transfer effects between the reactants and the confining walls, in particular if the walls are conductive. Also, the reactivity of carbenes on metal surfaces is significantly affected by the charge transfer between the carbene and the metal, rendering the carbene more nucleophilic or electrophilic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!