Planning the defossilization of energy systems while maintaining access to abundant primary energy resources is a non-trivial multi-objective problem encompassing economic, technical, environmental, and social aspects. However, most long-term policies consider the cost of the system as the leading indicator in the energy system models to decrease the carbon footprint. This paper is the first to develop a novel approach by adding a surrogate indicator for the social and economic aspects, the (EROI), in a whole-energy system optimization model. In addition, we conducted a global sensitivity analysis to identify the main parameters driving the EROI uncertainty. This method is illustrated in the 2035 Belgian energy system for several greenhouse gas (GHG) emissions targets. Nevertheless, it can be applied to any worldwide or country energy system. The main results are threefold when the GHG emissions are reduced by 80%: (i) the EROI decreases from 8.9 to 3.9; (ii) the imported renewable gas (methane) represents 60 % of the system primary energy mix; (iii) the sensitivity analysis reveals this fuel drives 67% of the variation of the EROI. These results raise questions about meeting the climate targets without adverse socio-economic impact, demonstrating the importance of considering the EROI in energy system models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580458 | PMC |
http://dx.doi.org/10.1007/s41247-022-00106-0 | DOI Listing |
Biophys J
January 2025
Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:
Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.
Transitioning to a power system heavily reliant on renewable wind energy involves more than just replacing conventional fossil-fuel-based power plant with wind farms, the wind energy must be able to meet the requirement of voltage establishment and power balance. It is believed that the self synchronized voltage source control of DFIG wind turbine generator is one of the possible solutions to realize virtual inertia and is helpful to increase the frequency stability of power system, thus is meaningful in the transformation of the power system dominated by renewable energy. Plenty of research has been conducted on the self synchronized voltage source control strategy in steady state, but few research is focused on the soft grid integration, which is a complicated process involving wind turbine control and power converter control.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, P.O Box 45124, Jazan, Saudi Arabia.
Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!