In order to realize the efficient and comprehensive utilization of e-waste resources and short process preparation of alloy brazing materials, this study has analyzed the microstructure and properties of e-waste recycled brazing alloys by the analysis methods of inductively coupled plasma emission spectrometer, differential scanning calorimeter, scanning electron microscope, metalloscope, X-ray diffractometer, micro-hardness tester. Experimental results showed that phase compositions are significant differences between the alloys prepared by the recycled e-waste and the pure metals. The circuit board recycling alloy mainly consisted of α-Fe dendrites, (Cu, Sn) phases, Sn-rich phases and Cu matrix, while the alloy obtained by pure metals is composed of (Cu, Sn) phase, Sn-rich phase and Cu matrix. The melting temperature of alloy obtained by melting the circuit board is in the range of 985.3°C-1,053.0°C, which was wider and higher than that of alloy obtained by pure metal smelting. The shear strengths of the joints brazed by the brazing alloys prepared by the recycle e-waste and pure metals are 182.21 MPa and 277.02 MPa, respectively. There is little difference in hardness between the two types of brazed joints. In addition, there are a large number of precipitated phases in alloy obtained by the recycled circuit board, owing to the precipitation strengthening mechanism. The main strengthening mechanism of alloy obtained by pure metals is solid-solution strengthening. The paper focused primarily on alloy obtained by melting the circuit board and studying the specific composition, melting temperature, structure, and properties of alloys formed by melting the circuit board and pure metals. Meawhile, the size, morphology and other microstructure evolution of the second phase of brazing alloy were investigated to provide theoretical guidance for the brazing alloy in the subsequent actual production process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581399PMC
http://dx.doi.org/10.3389/fchem.2022.1038555DOI Listing

Publication Analysis

Top Keywords

pure metals
20
circuit board
20
brazing alloy
12
alloy pure
12
melting circuit
12
alloy
11
microstructure properties
8
prepared recycled
8
recycled e-waste
8
brazing alloys
8

Similar Publications

Selective binding and optical sensing of Zn(II) and Cd(II) by L1, HL2, L3, HL4 and HL5 receptors were analysed in aqueous solutions by coupling potentiometric, UV-vis absorption and fluorescence emission measurements, with the aim to determine the effect of complex stability on selective signalling of metals with similar electronic configurations. All receptors share the same cyclic tetra-amine binding unit attached to a single quinoline (Q) or 8-hydroxyquinoline (8-OHQ) unit (L1 and HL2, respectively), two Q or 8-OHQ moieties (L3 and HL4, respectively), and, finally, two Q and two acetate groups (HL5). The crystal structures of the Cd(II) and Zn(II) complexes show that L3 and HL4 feature a cavity in which the larger Cd(II) complex is better fitted than the Zn(II) complex, leading to the formation of more stable Cd(II) complexes.

View Article and Find Full Text PDF

Background: Hearing loss (HL) is a common sensory disorder in humans. Studies on the relationship between arsenic, which is a highly toxic and widely distributed heavy metal with a health risk to humans, and hearing status in humans are contradictory and mostly focused on people living in arsenic-contaminated areas. This study investigated the association between urinary arsenic levels and hearing threshold shifts in the general population in the United States.

View Article and Find Full Text PDF

Unusual Inertness of a Ta Cluster in Dinitrogen Reactions.

J Phys Chem Lett

January 2025

Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Clusters serve as the optimal model to elucidate the structure-property relationship of materials, bridging condensed matter and individual atoms. The pursuit of exceptionally stable clusters has garnered significant interest. The distinctive electronic configuration and symmetrical geometry generally provide a consistent rationale for their stability.

View Article and Find Full Text PDF

The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.

View Article and Find Full Text PDF

High Efficiency and Narrow Emissions in Deep-Blue Pt(II) Emitters in Organic Light-Emitting Diodes via Anchor-Shaped Substituent Design.

ACS Appl Mater Interfaces

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

In this study, a tetradentate Pt(II) complex designed to have -heterocyclic carbene ligands modified with an anchor-shaped 2,6-diisopropylphenyl (dip) group is described to enhance molecular rigidity for narrow emission and high efficiency. The tetradentate ligand with the dip group significantly hinders steric interactions and restricts π-conjugation from benzocarbene, leading to shallow lowest unoccupied molecular orbital levels and a consequent reduction in the triplet metal-to-ligand charge transfer character. These structural modifications result in narrow emission spectra and enhanced efficiency for blue organic light-emitting diodes (OLEDs) over wide doping concentration ranges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!