We recently demonstrated, by means of short latency afferent inhibition (SAI), that before an imagined movement, during the reaction time (RT), SAI decreases only in the movement-related muscle (sensorimotor modulation) and that a correlation exists between sensorimotor modulation and motor imagery (MI) ability. Excitatory anodal transcranial direct current stimulation (a-tDCS) on M1 could enhance the MI outcome; however, mechanisms of action are not completely known. Here, we assessed if a-tDCS on M1 prior to an MI task could affect sensorimotor modulation. Participants imagined abducting the index or little finger in response to an acoustic signal. SAI was evaluated from the first dorsal interosseus after the "go" signal, before the expected electromyographic (EMG) activity. Participants received 20-min 1.5 mA a-tDCS or sham-tDCS on M1 on two different days, in random order. Results showed that a-tDCS on M1 increases the sensorimotor modulation consisting of a weakening of SAI after the Go signal with respect to sham-tDCS, in the movement-related muscle right before the beginning of MI. These results suggest that a-tDCS on M1 further potentiate those circuits responsible for sensorimotor modulation in the RT phase of MI. Increased sensorimotor modulation during MI may be one of the mechanisms involved in MI improvement after a-tDCS over M1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583391PMC
http://dx.doi.org/10.3389/fnhum.2022.862013DOI Listing

Publication Analysis

Top Keywords

sensorimotor modulation
28
transcranial direct
8
direct current
8
current stimulation
8
movement-related muscle
8
sensorimotor
7
modulation
7
a-tdcs
6
stimulation alters
4
alters sensorimotor
4

Similar Publications

The parasubthalamic nucleus: A novel eating center in the brain.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China. Electronic address:

Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities.

View Article and Find Full Text PDF

Characterizing the vestibular control of balance in the intrinsic foot muscles.

Gait Posture

December 2024

School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:

Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.

View Article and Find Full Text PDF

Background: Individuals with Mild Cognitive Impairment (MCI) are at greater risk of developing Alzheimer's disease (AD). Previous studies have shown that physical exercise is a protective factor against the clinical evolution of dementia in MCI. Lower muscle strength levels are associated with a greater risk of AD incidence.

View Article and Find Full Text PDF

Intracranial electrical kilohertz stimulation has recently been shown to achieve similar therapeutic benefit as conventional frequencies around 140 Hz. However, it is unknown how kilohertz stimulation influences neural activity in the mammalian brain. Using cellular calcium imaging in awake mice, we demonstrate that intracranial stimulation at 1 kHz evokes robust responses in many individual neurons, comparable to those induced by conventional 40 and 140 Hz stimulation in both the hippocampus and sensorimotor cortex.

View Article and Find Full Text PDF

Background: Coffee and tea are widely consumed beverages, but their long-term effects on cognitive function and aging remain largely unexplored. Lifestyle interventions, particularly dietary habits, offer promising strategies for enhancing cognitive performance and preventing cognitive decline.

Methods: This study utilized data from the UK Biobank cohort ( = 12,025) to examine the associations between filtered coffee, green tea, and standard tea consumption and neural network functional connectivity across seven resting-state networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!