Nanotechnology introduces revolutionary approaches for agriculture in the form of nano-based pesticides, fertilizers, sensors, weed-controlling agents, enhanced seed germination materials, etc. Even though metal-nanoparticles (NPs) have shown their potential to improve crop yield, the mode of action at the cellular level and fate in the human body and the environment are not well understood yet. Several metal-nanoparticles have been studied extensively by researchers for their active role in enhancing the rate of seed germination and crop quality augmentation which may happen due to several mechanisms such as increased porosity in nano-primed seeds inducing up-regulation of the expression of aquaporin and Reactive Oxygen Species (ROS) genes involved in water uptake, improving the root dehydrogenase activity to enhance the water absorption capability, etc. However, researchers have also demonstrated and reported the possible toxicity of NPs in the environment due to their agricultural practices. But the fate of NPs and their environmental impact are still unclear and largely vary based on several factors such as the size of NPs, coating material, mode of discharge and locations, etc. This review thoroughly focuses on the mode of action of various NPs in seed germination and accumulation, translocation through cells, and potential environmental and health risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519825PMC
http://dx.doi.org/10.1007/s13205-022-03361-6DOI Listing

Publication Analysis

Top Keywords

seed germination
12
mode action
8
nps
5
role metal-nanoparticles
4
metal-nanoparticles farming
4
farming practices
4
practices insight
4
insight nanotechnology
4
nanotechnology introduces
4
introduces revolutionary
4

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.

Plants (Basel)

January 2025

Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.

Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.

View Article and Find Full Text PDF

Alkaloid Profile, Anticholinesterase and Antioxidant Activities, and Sexual Propagation in (Amaryllidaceae).

Plants (Basel)

January 2025

Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP5400, Argentina.

, a recently described endemic species from southern Peru, belongs to the Amaryllidaceae family and is known for its diversity of alkaloids. Amaryllidoideae have been studied for their diverse biological activities, particularly for their properties in treating neurodegenerative diseases. This work examines the alkaloidal profile using GC-MS and UPLC-MS/MS of alkaloid-enriched extracts obtained from the leaves and bulbs of and their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!