This article shows the adequacy of the custom-built optical imaging system in the advancement investigation of obese mice. Obesity is defined as increased adipose/fatty mass resulting from a chronic imbalance between energy intake and expenditure. The in vivo investigation was performed for the tissue characterization of obese mice utilizing swept-source optical coherence tomography (SSOCT) for in situ examination and histology of delicate tissues in mice skin. It provides a noninvasive, painless visualization of the subsurface in life systems. Our SSOCT system's data is comparable to the regular invasive histology. Cross-assessment is done in various skin layers in obese mice like epidermis, papillary dermis, dermis, and fat tissue, which are likewise separated from the nonobese mice group. Histopathology results were further assessed with the obtained SSOCT results. This high precision of characterizing tissues using SSOCT helps us perform in vivo imaging and can also be used for the variable purpose of clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482893 | PMC |
http://dx.doi.org/10.1007/s13205-022-03351-8 | DOI Listing |
Sci Rep
December 2024
Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
Vitamin D is crucial for maintaining bone health and development, and bone mineral accumulation during childhood and adolescence affects long-term bone health. Vitamin D deficiency has been widely recognized as one of the main causes of osteoporosis and fractures, especially during the growth and development stage of children. Recent studies have shown that vitamin D deficiency may affect the deviation of bone development in children by mediating lipid metabolism disorders, but its specific mechanism of action has not been fully elucidated.
View Article and Find Full Text PDFMatrix Biol
December 2024
Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH. Electronic address:
Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
December 2024
Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.
Aim: The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions.
Methods: We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks.
Results: Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females.
Brain Behav Immun
December 2024
Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany. Electronic address:
Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated.
View Article and Find Full Text PDFDiabetes Obes Metab
December 2024
Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Aims: Hypothalamic endoplasmic reticulum stress (ERS) and mitochondrial dysfunction are two important mechanisms involved in the pathophysiology of obesity, which can be reversed by aerobic exercise to improve organ function. Mitofusion 2 (Mfn2), a mitochondrial membrane protein, affects both mitochondrial dynamics and ER morphology. This study explored the contribution of hypothalamic Mfn2 to exercise-induced improvements in energy homeostasis and peripheral metabolism and the underlying mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!