A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictors of limited early response to anti-vascular endothelial growth factor therapy in neovascular age-related macular degeneration with machine learning feature importance. | LitMetric

Purpose: Patients with neovascular age-related macular degeneration (nAMD) have varying responses to anti-vascular endothelial growth factor injections. Limited early response (LER) after three monthly loading doses is associated with poor long-term vision outcomes. This study predicts LER in nAMD and uses feature importance analysis to explain how baseline variables influence predicted LER risk.

Methods: Baseline age, best visual acuity (BVA), central subfield thickness (CST), and baseline and 3 months intraretinal fluid (IRF) and subretinal fluid (SRF) for 286 eyes were collected in a retrospective clinical chart review. At month 3, LER was defined as the presence of fluid, while early response (ER) was the absence thereof. Decision tree classification and feature importance methods determined the influence of baseline age, BVA, CST, IRF, and SRF, on predicted LER risk.

Results: One hundred and sixty-seven eyes were LERs and 119 were ERs. The algorithm achieved area under the curve = 0.66 in predicting LER. Baseline SRF was most important for predicting LER while age, BVA, CST, and IRF were somewhat less important. Nonlinear trends were observed between baseline variables and predicted LER risk. Zones of increased predicted LER risk were identified, including age <74 years, and CST <290 or >350 μm, IRF >750 nL, and SRF >150 nL.

Conclusion: These findings explain baseline variable importance for predicting LER and show SRF to be the most important. The nonlinear impact of baseline variables on predicted risk is shown, increasing understanding of LER and aiding clinicians in assessing personalized LER risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583356PMC
http://dx.doi.org/10.4103/sjopt.sjopt_73_22DOI Listing

Publication Analysis

Top Keywords

predicted ler
16
early response
12
ler
12
baseline variables
12
predicting ler
12
ler risk
12
limited early
8
anti-vascular endothelial
8
endothelial growth
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!