There is a need to standardize the process of micro/nanobubble preparation to bring it closer to clinical translation. We explored a neural network-based model to predict the structure-echogenicity relationship for the preparation and fabrication of ultrasound-enhanced contrast agents. Seven formulations were screened, and 109 measurements were obtained. An artificial neural network-multilayer perceptron (ANN-MLP) model was used. The original data were divided into the training and testing groups, which included 73 and 36 groups of data, respectively. The hidden layer was selected from three hidden layers and included bias. The classification graph showed that the predicted values of the training and testing groups were 76.7% and 66.7%, respectively. According to the receiver operating characteristic curve, the accuracy of different imaging effects could achieve a prediction rate of 88.1-96.5%. The percentage graph showed that the data were gradually converging. The predictive analysis curves of different ultrasound effects gradually approached stable value of Gain. Normalized importance predicted contributions for the Pk1, poly-dispersity index (PDI), and intensity account were 100%, 98.5%, and 89.7%, respectively. The application of the ANN-MLP model is feasible and effective for the exploration of the synthesis process of ultrasound contrast agents. 1,2-Distearoyl-sn-glycero-3 phosphoethanolamine-N (methoxy[polyethylene glycol]-2000) (DSPE PEG-2000) correlated highly with the success rate of contrast agent synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581267PMC
http://dx.doi.org/10.3389/fonc.2022.964314DOI Listing

Publication Analysis

Top Keywords

contrast agents
16
ultrasound contrast
8
structure-echogenicity relationship
8
ann-mlp model
8
training testing
8
testing groups
8
contrast
5
preparation ultrasound
4
agents
4
agents exploration
4

Similar Publications

Evaluation of endothelialization of an occluder device with cardiac computed tomography and assessment of the pathological validation.

PLoS One

January 2025

Department of Structural Heart Disease, Cardiovascular Institute and Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Assessing the endothelialization of occlusive devices noninvasively remains a challenge. Cardiac computed tomography angiography (CTA) can be employed to evaluate device endothelialization based on contrast uptake within the occluder.

Objective: This study examined device endothelialization using cardiac CTA and investigated the pathological associations.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Objective: To examine the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) with Sonazoid (Sonazoid-CEUS) for endometrial lesions.

Methods: In this prospective and multicenter study, data were collected from 84 patients with endometrial lesions from 11 hospitals in China. All the patients received a conventional US and Sonazoid-CEUS examination.

View Article and Find Full Text PDF

Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).

Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.

View Article and Find Full Text PDF

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!