Multipurpose FeO@APTES-Ag heterostructures for mutual heat generation, SERS probing, and antimicrobial activity were fabricated using a three-step process. Silver metallic particles were precipitated on a thin silica shell that served as an interlayer with FeO nanocubes. The structural properties were studied by means of the powder X-ray diffraction technique, and selected area electron diffraction. Particle size, distribution, and morphology were evaluated using transmission electron microscopy, while element mapping was performed using the STEM-EDS technique. The presence of the silica shell and the effectiveness of the Ag reduction were checked by FTIR-ATR spectroscopy. The heat generation ability was studied by using AMF and NIR contactless external stimulations working separately and simultaneously. We demonstrated that the dual mode stimulation leads to a SAR (specific absorption rate) of 1000 W g with the predominant role of the mechanism associated with the light interaction. The SERS effect was recorded with the use of the R6G standard molecule showing high capability of the heterostructures for Raman signal augmentation. FeO nanocubes decorated with Ag particles have shown antibacterial activity against . The FeO@APTES-Ag presents promising potential as a multipurpose platform for biological applications ranging from photomagnetic therapies, to analytical probes exploiting the SERS effect and antibacterial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513694PMC
http://dx.doi.org/10.1039/d2ra05207eDOI Listing

Publication Analysis

Top Keywords

feo@aptes-ag heterostructures
8
antimicrobial activity
8
heat generation
8
silica shell
8
feo nanocubes
8
antibacterial activity
8
alternating magnetic
4
magnetic field
4
field nir
4
nir energy
4

Similar Publications

Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.

View Article and Find Full Text PDF

Owing to the adverse consequences of excess glucose (Glu) and hydrogen peroxide (HO) on humans, it is imperative to develop an electrochemical sensor for detection of these analytes with good selectivity and sensitivity. Herein, a nanohybrid comprising nickel cobaltite nanoparticles (NiCoO NPs) embedded on conductive TiCT nanosheets (NSs) has been prudently designed and employed for the electrochemical detection of Glu and HO. The developed nanohybrid has been systematically characterized using morphological and spectral techniques, and then immobilized on a glassy carbon electrode (GCE).

View Article and Find Full Text PDF

A cation exchange (CE) reaction offers a remarkable opportunity to create versatile metal sulfide nanocrystals (NCs) with arbitrary complexity in composition, structure, and functionality. The concept of regioselectivity has been discovered and developed to build the target heterostructures through CE reactions, yet a general principle of regioselectivity remains unclear. In this work, we establish connections between experimental results and theoretical insights to elucidate the determinants of regioselectivity using designed aliovalent CE reactions on a two-dimensional template.

View Article and Find Full Text PDF

Crystal Facet Regulation and Ru Incorporation of CoO for Acidic Oxygen Evolution Reaction Electrocatalysis.

ACS Nanosci Au

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolysis. Ru- and Ir-based oxides are currently state-of-the-art electrocatalysts for acidic OER, but their high cost limits their widespread application. CoO is a promising alternative, yet the performance requires further improvement.

View Article and Find Full Text PDF

The development of catalysts with high activity and selectivity for the electrochemical nitrogen reduction reaction (NRR) remains crucial. Molybdenum carbide (MoC) shows promise as an electrocatalyst for NRR but faces challenges due to the difficulty of N adsorption and activation as well as the competitive hydrogen evolution reaction. In this study, we propose a strategy of combining TiO with MoC to form heterostructure catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!