In order to explore the surface state modulation mechanism of carbon dots (CDs) with high quantum yield (QY) and high product yield (PY), CDs were synthesized from different carbon sources with different contents of oxygen-containing functional groups and different silane coupling agents with nitrogen-containing functional groups. The highest QY of as-prepared CDs can reach 97.32% and the PY values of CDs are all high ranging from 46.33-58.76%. It is found that the high content of C[double bond, length as m-dash]O and pyrrolic N on the surface of CDs can endow CDs with high QY. Moreover, the PY of CDs not only depends on whether CDs have the crosslinked structure, but also is closely and positively correlated with pyridinic N. Consequently, our findings suggest that raw materials rich in carboxyl groups and amino groups are beneficial to the synthesis of CDs with high QY, and whether CDs with crosslinked structure and high content of pyridinic N decide the high PY of CDs. This work provides a theoretical guidance for large-scale synthesis of CDs with high QY and high PY.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513825 | PMC |
http://dx.doi.org/10.1039/d2ra05623b | DOI Listing |
Analyst
January 2025
Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China.
Water-soluble and biocompatible protein carbon dots (P-CDs) were simply prepared from egg white by a rapid one-step neutralization heat reaction. Unexpectedly, the thus-fabricated P-CDs could present excitation-dependent tunable fluorescence that could be quenched specifically by Fe and Fe ions with obvious color changes. A high-throughput fluorimetric platform was thereby developed by coating the P-CDs onto a capillary array for detection of total iron ions in fish blood samples, with a linear concentration range of 0.
View Article and Find Full Text PDFNeurol Educ
December 2024
From the Department of Neurology Feinberg School of Medicine (S.V.), Northwestern University, Chicago, IL; Baylor College of Medicine (D.K.), Houston, TX; University of Texas Health Science Center at Houston (E.F.S.), McGovern Medical School; Mayo Clinic (J.K.C.-G.), Rochester, MN; Weill Cornell Medical College (J.W.), New York, NY; American Academy of Neurology (C.M.C., T.O., C.M.K.), Minneapolis, MN.
Background And Objectives: To report a 2022 survey of US medical school neurology clerkship directors (CDs) and to compare the results with those of similar surveys conducted in 2005, 2012, and 2017.
Methods: An American Academy of Neurology (AAN) Consortium of Neurology Clerkship Directors (CNCD) workgroup developed the survey sent to all neurology CDs listed in the AAN CNCD database. Comparisons were made with 2005, 2012, and 2017 surveys.
Nat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan.
Antibiotic contamination of water bodies has become a serious problem, which leads to aquatic life pollution and the development of antibiotic resistance. Hence, development of highly sensitive and selective optical sensors for antibiotic detection is at the forefront of scientific research. In this study, we present the synthesis of europium-doped carbon dots (Eu-CDs) and excitation wavelength optimization for the highly sensitive detection of tetracycline (TC) and TC-family antibiotics in water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!