Background: Recipient donor matching in liver transplantation can require precise estimations of liver volume. Currently utilized demographic-based organ volume estimates are imprecise and nonspecific. Manual image organ annotation from medical imaging is effective; however, this process is cumbersome, often taking an undesirable length of time to complete. Additionally, manual organ segmentation and volume measurement incurs additional direct costs to payers for either a clinician or trained technician to complete. Deep learning-based image automatic segmentation tools are well positioned to address this clinical need.

Objectives: To build a deep learning model that could accurately estimate liver volumes and create 3D organ renderings from computed tomography (CT) medical images.

Methods: We trained a nnU-Net deep learning model to identify liver borders in images of the abdominal cavity. We used 151 publicly available CT scans. For each CT scan, a board-certified radiologist annotated the liver margins (ground truth annotations). We split our image dataset into training, validation, and test sets. We trained our nnU-Net model on these data to identify liver borders in 3D voxels and integrated these to reconstruct a total organ volume estimate.

Results: The nnU-Net model accurately identified the border of the liver with a mean overlap accuracy of 97.5% compared with ground truth annotations. Our calculated volume estimates achieved a mean percent error of 1.92% + 1.54% on the test set.

Conclusions: Precise volume estimation of livers from CT scans is accurate using a nnU-Net deep learning architecture. Appropriately deployed, a nnU-Net algorithm is accurate and quick, making it suitable for incorporation into the pretransplant clinical decision-making workflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585534PMC
http://dx.doi.org/10.1097/as9.0000000000000155DOI Listing

Publication Analysis

Top Keywords

deep learning
16
nnu-net deep
12
liver
8
liver volume
8
computed tomography
8
organ volume
8
volume estimates
8
learning model
8
model accurately
8
trained nnu-net
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!