The enhancement of vacancies in catalysts involving Fenton-like reactions is a promising way to remove organic pollutants in wastewater, but sulfur vacancies are rarely involved. In this work, MoS containing defect sites were synthesized by a simple high-temperature treatment and then applied for activating peroxymonosulfate to eliminate organic pollutants in wastewater. The structure was characterized by several techniques such as XRD, BET, and XPS. Important influencing factors were systemically investigated. The results indicated that MoS with sulfur vacancies possessed a higher catalytic activity than that of the parent MoS. The annealing temperature of the catalyst had a great effect on the removal of organic pollutants. Besides, the catalytic system had a wide pH range. Quenching and electron paramagnetic resonance (EPR) experiments indicated that the reaction system contained radical and non-radical species. The characterization results revealed that the defect sites in catalysts mainly strengthened the activity of catalysts. This study offers a new heterogeneous catalyst for the removal of organic pollutants the peroxymonosulfate-based Fenton-like reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486530PMC
http://dx.doi.org/10.1039/d2ra02448aDOI Listing

Publication Analysis

Top Keywords

organic pollutants
20
sulfur vacancies
12
pollutants wastewater
12
radical non-radical
8
fenton-like reactions
8
defect sites
8
removal organic
8
organic
5
pollutants
5
mos
4

Similar Publications

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!