Soybean () is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 μmol m s and 1,200 μmol m s of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; , , and with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583947PMC
http://dx.doi.org/10.3389/fpls.2022.1015414DOI Listing

Publication Analysis

Top Keywords

leaf area
24
plant height
20
soybean seedlings
16
photosynthetic rate
12
plasticity biomass
12
area
10
soybean
9
morphological physiological
8
seedlings grown
8
grown shade
8

Similar Publications

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

Background: Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied.

View Article and Find Full Text PDF

Background: Upland cotton (Gossypium hirsutum) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds.

View Article and Find Full Text PDF

The Metropolitan Area of São Paulo (MASP) in southern Brazil is impacted by high ozone levels posing significant threats to its urban forests and the Atlantic Forest remnants. These green areas, covering 540 km and constituting 30% of MASP's territory, necessitate an urgent assessment of air pollution impacts on their flora. Our study investigates the effects of atmospheric pollution on the morphoanatomical and physiological responses of four native tree species (Alchornea sidifolia, Casearia sylvestris, Guarea macrophylla, and Machaerium nyctitans) across two Atlantic Forest remnants in MASP.

View Article and Find Full Text PDF

The roots of Salvia yunnanensis, an herbaceous perennial widely distributed in Southwest China, is often used as a substitute for S. miltiorrhiza, a highly valued plant in traditional Chinese medicine (Wu et al. 2014).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!