Weed management involving tillage and/or herbicides has generally led to a decline of plant diversity in agroecosystems, with negative impacts on ecosystem services provision. The use of plant covers has become the predominant alternative in vineyard management, with numerous studies focusing on analyzing the advantages and disadvantages of plant covers compared to the aforementioned management. Although the impacts of weed management on taxonomic diversity have been widely studied, many gaps remain on their effects on plant functional diversity. As plant functional diversity is linked to the delivery of key ecosystem services in agroecosystems, understanding these effects could enable the development of more sustainable practices. From 2008 to 2018, a long-term trial was carried out in a Mediterranean vineyard to assess different agricultural practices. In this article, we examined how weed management, as well as irrigation use, could affect plant functional diversity. Based on 10 functional traits, such as plant height, specific leaf area or seed mass, we measured different indices of functional diversity and used null models to detect processes of trait convergence and divergence. Our results revealed that weed management and irrigation use had a significant effect on plant functional diversity. Mown plots showed the highest functional richness but were functionally convergent, since mowing was a strong functional filter on most of the traits. Tillage also behaved as a functional filter on some vegetative traits, but favored the divergence of certain reproductive traits. Herbicide-treated and irrigated plots showed the highest values of functional divergence by promoting more competitive species with more divergent trait values. The effect of weed management on these community assembly processes was shaped by the use of irrigation in vineyard rows, leading to functional divergence in those vegetative traits related to resource acquisition and seed mass. These results suggest that greater functional diversity may be associated with the bias caused by higher occurrence of competitive species (e.g. , ) with contrasting values for certain traits. Therefore, since these species are considered harmful to crops, higher plant functional diversity might not be a desirable indicator in agroecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585284PMC
http://dx.doi.org/10.3389/fpls.2022.993051DOI Listing

Publication Analysis

Top Keywords

functional diversity
32
plant functional
24
weed management
24
functional
13
plant
10
diversity
10
management
8
processes trait
8
trait convergence
8
convergence divergence
8

Similar Publications

Two-Dimensional Materials for Brain-Inspired Computing Hardware.

Chem Rev

January 2025

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed.

View Article and Find Full Text PDF

Despite the pivotal role of cytotoxic T lymphocytes (CTLs) in anti-tumor immunity, a substantial proportion of CTL-rich hepatocellular carcinoma (HCC) patients experience early relapse or immunotherapy resistance. However, spatial immune variations impacting the heterogeneous clinical outcomes of CTL-rich HCCs remain poorly understood. Here, we compared the single-cell and spatial landscapes of 20 CTL-rich HCCs with distinct prognoses using multiplexed in situ staining and validated the prognostic value of myeloid spatial patterns in a cohort of 386 patients.

View Article and Find Full Text PDF

Transcriptomic Profiles in Nasal Epithelium and Asthma Endotypes in Youth.

JAMA

January 2025

Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.

Importance: T helper 2 (T2) cells and T helper 17 (T17) cells are CD4+ T cell subtypes involved in asthma. Characterizing asthma endotypes based on these cell types in diverse groups is important for developing effective therapies for youths with asthma.

Objective: To identify asthma endotypes in school-aged youths aged 6 to 20 years by examining the distribution and characteristics of transcriptomic profiles in nasal epithelium.

View Article and Find Full Text PDF

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe.

ACS Chem Biol

January 2025

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!