High-entropy materials are compositionally complex materials which often contain five or more elements. The most commonly studied materials in this field are alloys and oxides, where their composition allows for tunable materials properties. High-entropy layered double hydroxides have been recently touted as the next focus for the field of high-entropy materials to expand into. However, most previous work on multi-cationic layered double hydroxides has focused on syntheses with 5 or less cations in the structure. To bridge this gap into high-entropy materials, this work explores the range and extent of different compositional combinations for high-entropy double layered hydroxides. Specifically, pure layered double hydroxides were synthesized with different combinations of 7 cations (Mg, Co, Cu, Zn, Ni, Al, Fe, Cr) as well as one combination of 8 cations by utilizing a hydrothermal synthesis method. Furthermore, magnetic properties of the 8-cation LDH were investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475562 | PMC |
http://dx.doi.org/10.1039/d2ra05435c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!