A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesoporous covalent organic framework microspheres with dual-phase separation strategy for high-purity glycopeptide enrichment. | LitMetric

Mesoporous covalent organic framework microspheres with dual-phase separation strategy for high-purity glycopeptide enrichment.

J Chromatogr A

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China. Electronic address:

Published: November 2022

High-performance porous materials and rational enrichment strategies are crucial during sample pretreatment process in glycoproteomics analysis. Herein, we report a dual-phase separation strategy based on hydrophobic and hydrophilic mesoporous covalent-organic framework (COF) microspheres for high-purity glycopeptide enrichment for the first time. The COF microspheres (about 1.8±0.5 μm) with hydrophobic mesopores (2.5 nm) were prepared by a facile method at room temperature. Through the post-synthesis modification strategy, hydrophilic mesopores were obtained by modifying the vinyl ligands with glutathione (GSH), and the hydrophilic properties of COF microspheres were further enhanced by the introduction of Au nanoparticles and GSH to obtain the hydrophilic COF microspheres (denoted as COF@Au-GSH). The low-abundance hydrophilic glycopeptides could be efficiently enriched by the hydrophilic COF@Au-GSH microspheres in low polar solutions after the high-abundance hydrophobic non-glycopeptides were removed with the hydrophobic COF microspheres in high polar solutions. With the help of dual-phase separation strategy and inherent properties of the COF structure, the as-prepared COF microspheres showed splendid enrichment performance for glycopeptides, including ultrahigh sensitivity (2 fmol, IgG digests), extremely high specificity (1:10000, IgG digests/BSA digests), excellent size selectivity (1:500:500, IgG digests/BSA/IgG), and large binding capacity (200 mg g, IgG digests). In addition, a total of 1993 glycopeptides could be enriched and identified from the rat liver digests after enrichment by the COF microspheres. As a proof of concept application, the proposed strategy was successfully used in sample pretreatment process for plasma glycoproteomic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463575DOI Listing

Publication Analysis

Top Keywords

cof microspheres
28
dual-phase separation
12
separation strategy
12
microspheres
9
high-purity glycopeptide
8
glycopeptide enrichment
8
sample pretreatment
8
pretreatment process
8
cof
8
gsh hydrophilic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!