Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study successfully created a portable acetylcholinesterase sensor on a printed hybrid electrode capable of detecting chlorpyrifos in the field. While a screen-printed electrode was chosen herein to enable a single-use and portable platform for the in-field application, the hybrid material was incorporated to ensure ultrasensitive detection at lower electrode potentials. The hybrid ink of gold nanoparticles (AuNPs) decorated on graphene (GP) sheets in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was synthesized through a simple completely-green one-pot process. The subsequent characterization was carried out via transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). The synergy resulting from the greater surface area and enhanced transfer of electrons combined with high levels of electrocatalytic activity and superb conductivity offered by GP, AuNP, and PEDOT:PSS allows the sensor to exhibit ultrasensitive chlorpyrifos detection at the relatively low detection limit of 0.07 nM. The sensor demonstrated in this study also exhibits good reproducibility, desirable stability, and a successful application for the real sample with satisfactory recovery results of around 106 %, indicating its potential for use as a tool in the analysis of pesticides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2022.108305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!