Neuronal nitric oxide synthase (nNOS) is an enzyme constitutively expressed in the mammalian brain and skeletal muscles. The excessive activation of nNOS in the neurons results in oxidative and nitrosative stress associated with neuronal loss in various neurological disorders. Several nNOS inhibitors have been reported to limit the excessive activation of nNOS. In the present work, we have designed and carried the synthesis of benzo[d]thiazol-2-yl-methyl-4-(substituted)-piperazine-1-carbothioamide as novel neuronal nitric oxide inhibitors (5-28, twenty-four compounds). Stably transfected HEK 293 cells expressing NOS isoforms treated with the compounds (5-28) showed that the eight compounds exhibited > 95% cell survival in the MTT assay. nNOS inhibition assay of the eight compounds illustrated that the compound 18 was most selective for nNOS (nNOS=66.73 ± 1.51; eNOS=28.70 ± 1.39; iNOS =13.26 ± 1.01) in HEK 293 cells expressing NOS isoforms. 6-OHDA-induced unilaterally lesioned rats treated with the compound 18 showed the improvement in motor and non-motor functions. Furthermore, the compound 18 showed the increased levels of dopamine and decreased levels of glutamate and nitrite ions in the isolated rat brain. In the docking analysis, the compound 18 showed the significant binding affinity with the nNOS binding site (the ∆G value = - 9.0 kcal/mol). Overall results demonstrated that the N-(benzo[d]thiazol-2-ylmethyl)-4-(4-nitrophenyl) piperazine-1-carbothioamide (the compound 18) possessed significant nNOS inhibiting activity and neuroprotecting potential in 6-OHDA-induced unilaterally lesioned rat model of PD and more work will be required to establish the role of the compound 18 in the therapy of PD and other neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113838 | DOI Listing |
J Nutr
January 2025
USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. Electronic address:
Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.
View Article and Find Full Text PDFBrain Res Bull
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:
Int J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.
View Article and Find Full Text PDFElife
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!