Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enzymatic degradation of poly(ethylene terephthalate) (PET) has emerged as a promising route for ecofriendly biodegradation of plastic waste. Several discontinuous activity assays have been developed for assessing PET hydrolyzing enzymes, usually involving manual sampling at different time points during the course of the enzymatic reaction. In this work, we present a novel, compartmentalized UV absorbance assay for continuous detection of soluble hydrolysis products released during enzymatic degradation of PET. The methodology is based on removal of the walls separating two diagonally adjacent wells in UV-transparent microplates, to ensure passage of soluble enzymatic hydrolysis products between the two adjacent wells: One well holds an insoluble PET disk of defined dimensions and the other is used for continuous reading of the enzymatic product formation (at 240 nm). The assay was validated by quantifying the rate of mixing of the soluble PET degradation product BHET (bis(2-hydroxyethyl) terephthalate) between the two adjacent wells. The assay validation also involved a simple adjustment for water evaporation during prolonged assays. With this new assay, we determined the kinetic parameters for two PET hydrolases, DuraPETase and LCC, and verified the underlying assumption of steady-state reaction rates. This new continuous assay enables fast exploration and robust kinetic characterization of PET degrading enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2022.110142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!